Showing 20 articles starting at article 881
< Previous 20 articles Next 20 articles >
Categories: Biology: Genetics, Computer Science: Quantum Computers
Published Algae provide clues about 600 million years of plant evolution



Researchers generated large scale gene expression data to investigate the molecular networks that operate in one of the closest algal relatives of land plants, a humble single-celled alga called Mesotaenium endlicherianum.
Published How some ion channels form structures permitting drug delivery



A member of an important class of ion channel proteins can transiently rearrange itself into a larger structure with dramatically altered properties, according to a new study. The discovery is a significant advance in cell biology, likely solves a long-standing mystery about an unusual feature of some ion channels and has implications for the development of drugs targeting these proteins and for drug delivery.
Published A simpler way to connect quantum computers


Researchers have developed a new approach to building quantum repeaters, devices that can link quantum computers over long distances. The new system transmits low-loss signals over optical fiber using light in the telecom band, a longstanding goal in the march toward robust quantum communication networks.
Published Paving the way for advanced quantum sensors


Quantum physics has allowed for the creation of sensors far surpassing the precision of classical devices. Now, several new studies show that the precision of these quantum sensors can be significantly improved using entanglement produced by finite-range interactions. Researchers were able to demonstrate this enhancement using entangled ion-chains with up to 51 particles.
Published Newly engineered versions of bacterial enzyme reveal how antibiotics could be more potent



Researchers applied a new technology to generate the full inventory of mutations in the bacterial species Escherichia coli where the antibiotic rifampicin attaches to and disables an essential bacterial enzyme known as RNA polymerase (RNAP).
Published Enhancing cancer therapy using functionalized photosynthetic bacteria



Selective targeting of cancerous cells poses major clinical challenges during cancer therapy. However, this limitation can be overcome by using bioengineered bacteria with highly optimized chemical modifications. A recent study demonstrates the use of chemically modified purple photosynthetic bacteria for the successful detection and elimination of colon cancer cells in a mouse model. The study also sheds light on the underlying mechanism of action.
Published Hotter quantum systems can cool faster than initially colder equivalents


The Mpemba effect is originally referred to the non-monotonic initial temperature dependence of the freezing start time, but it has been observed in various systems -- including colloids -- and has also become known as a mysterious relaxation phenomenon that depends on initial conditions. However, very few have previously investigated the effect in quantum systems. Now, the temperature quantum Mpemba effect can be realized over a wide range of initial conditions.
Published Saving species from extinction -- high-quality kakapo population sequencing provides breakthrough in understanding key conservation genetics



High-quality sequencing of nearly the entire kakapo population is helping New Zealand to manage the health of this critically endangered species.
Published New approach to fighting malaria



Findings can open up new avenues for targeted approaches toward therapeutic strategies against the malaria-causing P. falciparum that are aimed at stopping the parasite's life cycle progression and its sexual differentiation, thus blocking the transmission of the parasite into mosquitoes.
Published Quantum computer unveils atomic dynamics of light-sensitive molecules


Researchers have implemented a quantum-based method to observe a quantum effect in the way light-absorbing molecules interact with incoming photons. Known as a conical intersection, the effect puts limitations on the paths molecules can take to change between different configurations. The observation method makes use of a quantum simulator, developed from research in quantum computing, and offers an example of how advances in quantum computing are being used to investigate fundamental science.
Published Making the invisible, visible: New method makes mid-infrared light detectable at room temperature


Scientists have developed a new method for detecting mid-infrared (MIR) light at room temperature using quantum systems.
Published Unlocking the secrets of cell antennas



The NSL (non-specific lethal) complex regulates thousands of genes in fruit flies and mammals. Silencing the NSL genes leads to the death of the organism, which gave the complex its curious name. Researchers have now discovered that the genes regulated by the NSL complex also include genes of the intraciliary transport system. This enables different cell types to form cilia on their surface, which are important for cell communication. The study shows that these genes are 'switched on' by the NSL complex, regardless of whether a particular cell has cilia or not. The researchers found that this class of cilia-associated genes is crucial for the function of podocytes. This is a highly specialized cell type of the kidney that, paradoxically, does not have cilia. These findings have important implications for ciliopathies and kidney disease.
Published New quantum device generates single photons and encodes information


A new approach to quantum light emitters generates a stream of circularly polarized single photons, or particles of light, that may be useful for a range of quantum information and communication applications. A team stacked two different, atomically thin materials to realize this chiral quantum light source.
Published Epigenetic mechanism that causes bitter taste distortion discovered



A bitter taste in the mouth is often a symptom or side effect of illness, which may be the result of how the body reacts to pathogens. A new study sheds light on the mechanisms involved in the complex interplay between taste perception and immune function. Their work also highlights the potential of a sequencing tool for investigating epigenetic mechanisms that affect taste-cell gene expression.
Published Researchers describe rebuilding, regenerating lung cells



Researchers have discovered a novel approach for engrafting engineered cells into injured lung tissue. These findings may lead to new ways for treating lung diseases, such as emphysema, pulmonary fibrosis and COVID-19. The two studies describe the methodologies for engineering lung stem cells and transplanting them into injured experimental lungs without immunosuppression.
Published The 'treadmill conveyor belt' ensuring proper cell division



Researchers have discovered how proteins work in tandem to regulate 'treadmilling', a mechanism used by the network of microtubules inside cells to ensure proper cell division.
Published Do measurements produce the reality they show us?


The measurement values determined in sufficiently precise measurements of physical systems will vary based on the relation between the past and the future of a system determined by its interactions with the meter. This finding may explain why quantum experiments often produce paradoxical results that can contradict our common-sense idea of physical reality.
Published Longevity gene from naked mole rats extends lifespan of mice



In a groundbreaking endeavor, researchers have successfully transferred a longevity gene from naked mole rats to mice, resulting in improved health and an extension of the mouse's lifespan. The research opens exciting possibilities for unlocking the secrets of aging and extending human lifespan.
Published Research group detects a quantum entanglement wave for the first time using real-space measurements


A team has created an artificial quantum magnet featuring a quasiparticle made of entangled electrons, the triplon.
Published Scientists develop fermionic quantum processor


Researchers have designed a new type of quantum computer that uses fermionic atoms to simulate complex physical systems. The processor uses programmable neutral atom arrays and is capable of simulating fermionic models in a hardware-efficient manner using fermionic gates. The team demonstrated how the new quantum processor can efficiently simulate fermionic models from quantum chemistry and particle physics.