Showing 20 articles starting at article 281
< Previous 20 articles Next 20 articles >
Categories: Biology: Genetics, Mathematics: Modeling
Published Persistent strain of cholera defends itself against forces of change, scientists find



A longstanding mystery about the strain of Vibrio cholerae (V. cholerae) responsible for the seventh global cholera pandemic is how this lineage has managed to out-compete other pathogenic variants. The team identified a unique quirk of the immune system that protects the bacteria from a key driver of bacterial evolution.
Published Insights into protein evolution



A research team has unveiled a breakthrough in understanding how specific genetic sequences, known as pseudogenes, evolve.
Published Fruit fly testes offer potential tool against harmful insects



A way to curb nagging insects has been flying under our radar -- an enzyme from fruit fly testes. The compound could control bugs that carry disease and harm crops by stunting their ability to procreate, researchers have found.
Published New work extends the thermodynamic theory of computation



Physicists and computer scientists have recently expanded the modern theory of the thermodynamics of computation. By combining approaches from statistical physics and computer science, the researchers introduce mathematical equations that reveal the minimum and maximum predicted energy cost of computational processes that depend on randomness, which is a powerful tool in modern computers.
Published New viruses that could cause epidemics on the horizon



Suddenly they appear and -- like the SARS-CoV-2 coronavirus -- can trigger major epidemics: Viruses that nobody had on their radar. They are not really new, but they have changed genetically. In particular, the exchange of genetic material between different virus species can lead to the sudden emergence of threatening pathogens with significantly altered characteristics.
Published Like dad and like mum ... all in one plant



Scientists have established a system to generate clonal sex cells in tomato plants and used them to design the genomes of offspring. The fertilization of a clonal egg from one parent by a clonal sperm from another parent led to plants containing the complete genetic information of both parents.
Published Research on centromere structure yields new insights into the mechanisms of chromosome segregation errors



Researchers have made a surprising new discovery in the structure of the centromere, a structure that is involved in ensuring that chromosomes are segregated properly when a cell divides. Mistakes in chromosome segregation can lead to cell death and cancer development. The researchers discovered that the centromere consists of two subdomains. This fundamental finding has important implications for the process of chromosome segregation and provides new mechanisms underlying erroneous divisions in cancer cells. The research was published in Cell on May 13th 2024.
Published How do genetically identical water fleas develop into male or female?



Researchers have used a novel combination of short-read and long-read RNA sequencing to identify the different isoforms of genes expressed in the crustacean Daphnia magna. Males and females are genetically identical, but using this technique the team revealed genes that switch the predominant isoform in a male-female-dependent manner. This study may help further advance technologies in crustacean aquaculture.
Published Research shows that 'softer' proteins can cross into the nucleus quicker



Researchers have discovered that how soft or rigid proteins are in certain regions can dictate how fast or slow they enter the nucleus.
Published Cellular activity hints that recycling is in our DNA



Introns are perhaps one of our genome's biggest mysteries. They are DNA sequences that interrupt the sensible protein-coding information in your genes, and need to be 'spliced out.'
Published New machine learning algorithm promises advances in computing



Systems controlled by next-generation computing algorithms could give rise to better and more efficient machine learning products, a new study suggests.
Published New sex-determining mechanism in African butterfly discovered



In a study of a species of African butterfly, researchers have discovered a previously undescribed molecular mechanism of how the sex of an embryo is initially specified.
Published AI advancements make the leap into 3D pathology possible



Researchers present Tripath: new, deep learning models that can use 3D pathology datasets to make clinical outcome predictions. The research team imaged curated prostate cancer specimens, using two 3D high-resolution imaging techniques. The models were then trained to predict prostate cancer recurrence risk on volumetric human tissue biopsies. By comprehensively capturing 3D morphologies from the entire tissue volume, Tripath performed better than pathologists and outperformed deep learning models that rely on 2D morphology and thin tissue slices.
Published An epigenome editing toolkit to dissect the mechanisms of gene regulation



A recent study led to the development of a powerful epigenetic editing technology. The system unlocks the ability to precisely program chromatin modifications at any specific position in the genome, to understand their causal role in transcription regulation. This innovative approach will help to investigate the role of chromatin modifications in many biological processes, and to program desired gene activity responses, which may prove useful in disease settings.
Published An AI leap into chemical synthesis



Scientists introduce a large language model-based AI system that revolutionizes chemistry by integrating 18 advanced tools for tasks like organic synthesis and drug discovery.
Published Emergency department packed to the gills? Someday, AI may help



Emergency departments nationwide are overcrowded and overtaxed, but a new study suggests artificial intelligence (AI) could one day help prioritize which patients need treatment most urgently.
Published Progression of herpesvirus infection remodels mitochondrial organization and metabolism



Researchers have found that herpesvirus infection modifies the structure and normal function of the mitochondria in the host cell. The new information will help to understand the interaction between herpesvirus and host cells. Knowledge can be utilized in the development of viral treatments.
Published How a 'conductor' makes sense of chaos in early mouse embryos



The earliest stages of mammalian embryo development are like an orchestra performance, where everyone must play at the exact right moment and in perfect harmony. New research identifies one of the conductors making sense of the chaos.
Published Free-forming organelles help plants adapt to climate change



Plants' ability to sense light and temperature, and their ability to adapt to climate change, hinges on free-forming structures in their cells whose function was, until now, a mystery. Researchers have now determined how these structures work on a molecular level, as well as where and how they form.
Published Researchers use foundation models to discover new cancer imaging biomarkers



Researchers have harnessed the technology behind foundation models, which power tools like ChatGPT, to discover new cancer imaging biomarkers that could transform how patterns are identified from radiological images. Improved identification of such patterns can greatly impact the early detection and treatment of cancer.