Showing 20 articles starting at article 841

< Previous 20 articles        Next 20 articles >

Categories: Biology: Genetics, Mathematics: Modeling

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Ecology: Animals
Published

Sometimes beneficial, sometimes damaging: The double role of the enzyme chameau      (via sciencedaily.com)     Original source 

Biologists have discovered why an enzyme is important for the survival of fruit flies, even though it can shorten their lives under certain conditions.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Fast-track strain engineering for speedy biomanufacturing      (via sciencedaily.com) 

Using engineered microbes as microscopic factories has given the world steady sources of life-saving drugs, revolutionized the food industry, and allowed us to make sustainable versions of valuable chemicals previously made from petroleum. But behind each biomanufactured product on the market today is the investment of years of work and many millions of dollars in research and development funding. Scientists want to help the burgeoning industry reach new heights by accelerating and streamlining the process of engineering microbes to produce important compounds with commercial-ready efficiency.

Chemistry: Biochemistry Mathematics: General Mathematics: Modeling Physics: General
Published

Machine learning models can produce reliable results even with limited training data      (via sciencedaily.com) 

Researchers have determined how to build reliable machine learning models that can understand complex equations in real-world situations while using far less training data than is normally expected.

Biology: Biochemistry Biology: Botany Biology: General Biology: Genetics Ecology: Endangered Species Environmental: Ecosystems Environmental: Water Geoscience: Geochemistry
Published

Gene required for root hair growth, nitrate foraging found in grasses      (via sciencedaily.com)     Original source 

Scientists have found a plant gene that drives the growth of root hairs, the tiny structures that help plants find water and nutrients in the soil. The gene, dubbed 'BUZZ,' causes faster-growing, denser webs of roots and may also determine how plants find and use nitrates, a prime source of nitrogen essential to plant growth. Nitrates are also used in fertilizers that can pollute the environment as runoff, and this genetic discovery could ultimately help plant scientists find ways to grow crops more sustainably.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Chemistry: Biochemistry Chemistry: General Computer Science: General
Published

Scientists develop method to detect deadly infectious diseases      (via sciencedaily.com) 

Researchers have developed a way of detecting the early onset of deadly infectious diseases using a test so ultrasensitive that it could someday revolutionize medical approaches to epidemics. The test is an electronic sensor contained within a computer chip. It employs nanoballs -- microscopic spherical clumps made of tinier particles of genetic material -- and combines that technology with advanced electronics.

Anthropology: General Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Marine Biology: Molecular Biology: Zoology Ecology: Sea Life
Published

Tiny sea creatures reveal the ancient origins of neurons      (via sciencedaily.com)     Original source 

A new study sheds new light on the origins of modern brain cells. Researchers find evidence that specialized secretory cells found in placozoans, tiny sea creatures the size of a grain of sand, have many similarities to the neuron, such as the genes required to create a partial synapse. From an evolutionary point of view, early neurons might have started as something like these cells, eventually gaining the ability to create a complete synapse, form axons and dendrites and create ion channels that generate fast electrical signals -- innovations which gave rise to the neuron in more complex animals such as jellyfish. Though the complete story of how the first neuron appeared remains to be told, the study demonstrates that the basic building blocks for our brain cells were forming in the ancestors of placozoans grazing inconspicuously in the shallow seas of Earth around 800 million years ago.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Ecology: Animals Ecology: Extinction Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Early Mammals and Birds Paleontology: Fossils Paleontology: General
Published

RNA for the first time recovered from an extinct species      (via sciencedaily.com)     Original source 

A new study shows the isolation and sequencing of more than a century-old RNA molecules from a Tasmanian tiger specimen preserved at room temperature in a museum collection. This resulted in the reconstruction of skin and skeletal muscle transcriptomes from an extinct species for the first time. The researchers note that their findings have relevant implications for international efforts to resurrect extinct species, including both the Tasmanian tiger and the woolly mammoth, as well as for studying pandemic RNA viruses.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species
Published

Tracking down the formation of cardenolides in plants      (via sciencedaily.com)     Original source 

Scientists are investigating the previously largely unknown biosynthetic pathway that leads to the formation of cardenolides in plants. In a new study, they present two enzymes from the CYP87A family as key enzymes that catalyze the formation of pregnenolone, the precursor for the biosynthesis of plant steroids, in two different plant families. The discovery of such enzymes should help to develop platforms for the cheap and sustainable production of high quality steroid compounds for medical use.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Ecology: Endangered Species
Published

Mitochondrial genome editing technique yields useful traits      (via sciencedaily.com)     Original source 

Tweaks to the mitochondrial genome hold the potential for better hybrid seed production or to introduce seedless fruits.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Genome editing: Reducing off-target mutations in DNA      (via sciencedaily.com)     Original source 

Researchers have developed a novel genome editing technique known as NICER, which results in significantly fewer off-target mutations than CRISPR/Cas9 editing. The technique uses a different type of enzyme that makes single-stranded 'nicks' in the DNA. Repair of these nicks is more efficient and accurate than repair of double-strand breaks caused by the current CRISPR/Cas9 editing. This technique represents a novel approach for the treatment of genetic diseases caused by heterozygous mutations.

Mathematics: General Mathematics: Modeling
Published

Are US teenagers more likely than others to exaggerate their math abilities?      (via sciencedaily.com) 

A major new study has revealed that American teenagers are more likely than any other nationality to brag about their math ability.

Computer Science: General Mathematics: Modeling
Published

AI-driven tool makes it easy to personalize 3D-printable models      (via sciencedaily.com) 

With Style2Fab, makers can rapidly customize models of 3D-printable objects, such as assistive devices, without hampering their functionality.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Marine Biology: Microbiology Biology: Molecular Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Genetically modified bacteria break down plastics in saltwater      (via sciencedaily.com)     Original source 

Researchers have genetically engineered a marine microorganism to break down plastic in salt water. Specifically, the modified organism can break down polyethylene terephthalate (PET), a plastic used in everything from water bottles to clothing that is a significant contributor to microplastic pollution in oceans.

Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Researchers discover tissue-specific protection against protein aggregation      (via sciencedaily.com)     Original source 

Researchers have identified a backup mechanism of protein quality control which prevents the toxic effects of protein aggregation in specific tissues when normal methods of molecular monitoring fail. By understanding how different tissues tackle protein build up, this research could accelerate the identification of ways to protect tissues that are vulnerable to protein build up, possibly tackling both disease-associated protein aggregates and also age-dependent aggregates that accelerate the functional decline of tissues.

Computer Science: Artificial Intelligence (AI) Mathematics: Modeling
Published

Verbal nonsense reveals limitations of AI chatbots      (via sciencedaily.com) 

The era of artificial-intelligence chatbots that seem to understand and use language the way we humans do has begun. Under the hood, these chatbots use large language models, a particular kind of neural network. But a new study shows that large language models remain vulnerable to mistaking nonsense for natural language. To a team of researchers, it's a flaw that might point toward ways to improve chatbot performance and help reveal how humans process language.

Computer Science: Artificial Intelligence (AI) Computer Science: General Mathematics: General Mathematics: Modeling Offbeat: Computers and Math Offbeat: General
Published

Evolution wired human brains to act like supercomputers      (via sciencedaily.com) 

Scientists have confirmed that human brains are naturally wired to perform advanced calculations, much like a high-powered computer, to make sense of the world through a process known as Bayesian inference.

Mathematics: Modeling
Published

Images of simulated cities help artificial intelligence to understand real streetscapes      (via sciencedaily.com) 

To address the lack of suitable training data for deep-learning semantic segmentation models in urban landscaping, researchers developed a method that generates a training dataset without the need for real images or a model of an existing city. The method, which is based on procedural modelling and image-to-image techniques, enables segmentation models to achieve comparable performance under some conditions at a fraction of the cost of real dataset generation.

Biology: Cell Biology Biology: Developmental Biology: Genetics Biology: Molecular
Published

From hagfish to membrane: Modeling age-related macular degeneration      (via sciencedaily.com)     Original source 

Researchers have successfully demonstrated that hagfish slime proteins can accurately replicate membranes in the human eye. Scientists were able to properly grow retinal cells on hagfish slime proteins and prove that the protein's behavior changes as the membrane mimics stages of aging and disease.

Biology: Cell Biology Biology: Developmental Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Flu: Interferon-gamma from T follicular helper cells is required to create lung-resident memory B cells      (via sciencedaily.com)     Original source 

During a bout of influenza, B cells interact with other immune cells and then take different paths to defend the body. One path is the B cells that differentiate into lung-resident memory B cells, or lung-BRMs, that are critical for pulmonary immunity. These long-lived, non-circulating lung-BRMs migrate to the lungs from draining lymph nodes and reside there permanently as the first layer of defense that can quickly react to produce antibodies in a future infection.

Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Mysterious family of microbial proteins hijack crops' cellular plumbing      (via sciencedaily.com)     Original source 

Some crop pathogens use a clever trick to multiply and spread infection: they hijack the plant's cellular plumbing. In a new study, researchers unveil a class of bacterial proteins that fold into a straw-like shape and insert themselves into the plant cell membrane, allowing the inside of the leaf to become waterlogged. The researchers also figured out a possible way to block the water channel proteins and prevent infection.