Showing 20 articles starting at article 961

< Previous 20 articles        Next 20 articles >

Categories: Biology: Genetics, Mathematics: Modeling

Return to the site home page

Mathematics: Modeling
Published

Applying artificial intelligence for early risk forecasting of Alzheimer's disease      (via sciencedaily.com)     Original source 

An international research team has developed an artificial intelligence (AI)-based model that uses genetic information to predict an individual's risk of developing Alzheimer's disease (AD) well before symptoms occur. This groundbreaking study paves the way for using deep learning methods to predict the risks of diseases and uncover their molecular mechanisms; this could revolutionize the diagnosis of, interventions for, and clinical research on AD and other common diseases such as cardiovascular diseases.

Mathematics: Modeling
Published

New AI boosts teamwork training      (via sciencedaily.com)     Original source 

Researchers have developed a new artificial intelligence (AI) framework that is better than previous technologies at analyzing and categorizing dialogue between individuals, with the goal of improving team training technologies. The framework will enable training technologies to better understand how well individuals are coordinating with one another and working as part of a team.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Ecology: Invasive Species Ecology: Nature Ecology: Trees Environmental: Biodiversity Environmental: Ecosystems Environmental: General
Published

Older trees accumulate more mutations than their younger counterparts      (via sciencedaily.com)     Original source 

A study of the relationship between the growth rate of tropical trees and the frequency of genetic mutations they accumulate suggests that older, long-lived trees play a greater role in generating and maintaining genetic diversity than short-lived trees.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

A compound from fruit flies could lead to new antibiotics      (via sciencedaily.com)     Original source 

Research shows that the natural peptide, called drosocin, protects fruit flies from bacterial infections by binding to ribosomes in bacteria. Once bound, drosocin prevents the ribosome from making new proteins.

Computer Science: General Mathematics: Modeling
Published

The digital dark matter clouding AI      (via sciencedaily.com)     Original source 

Scientists using artificial intelligence technology may be inviting unwanted noise into their genome analyses. Now, researchers have created a computational correction that will allow them to see through the fog and find genuine DNA features that could signal breakthroughs in health and medicine.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Ecology: Endangered Species Ecology: Extinction Ecology: Nature
Published

Genomes of 233 primate species sequenced      (via sciencedaily.com)     Original source 

Researchers from 24 countries have analyzed the genomes of 809 individuals from 233 primate species, generating the most complete catalog of genomic information about our closest relatives to date. The project provides new insights into the evolution of primates, including humans, and their diversity. In baboons, for example, hybridization and gene flow between different species occurred in the past and is still ongoing in several regions of their range. This makes baboons a good model for the evolution of early human lineages within and outside Africa. In addition, using a specially designed AI algorithm, the genomic data enable new insights into the genetic causes of human diseases.

Chemistry: Inorganic Chemistry Mathematics: Modeling Physics: General Physics: Quantum Physics
Published

Finally solved! The great mystery of quantized vortex motion      (via sciencedaily.com)     Original source 

Scientists investigated numerically the interaction between a quantized vortex and a normal-fluid. Based on the experimental results, researchers decided the most consistent of several theoretical models. They found that a model that accounts for changes in the normal-fluid and incorporates more theoretically accurate mutual friction is the most compatible with the experimental results.

Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

New class of antibiotics to fight resistant bacteria      (via sciencedaily.com)     Original source 

Health professionals are in urgent need of new antibiotics to tackle resistant bacteria. Researchers have now modified the chemical structure of naturally occurring peptides to develop antimicrobial molecules that bind to novel targets in the bacteria's metabolism.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Ecology: Endangered Species Geoscience: Geochemistry
Published

Symbiotic and pathogenic fungi may use similar molecular tools to manipulate plants      (via sciencedaily.com)     Original source 

Symbiotic and pathogenic fungi that interact with plants are distantly related and don't share many genetic similarities. Comparing plant pathogenic fungi and plant symbiotic fungi, scientists at the Sainsbury Laboratory Cambridge University (SLCU) have discovered that these remote relatives are using a similar group of proteins to manipulate and live within plants.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

DNA damage repaired by antioxidant enzymes      (via sciencedaily.com)     Original source 

In crisis, the nucleus calls antioxidant enzymes to the rescue. The nucleus being metabolically active is a profound paradigm shift with implications for cancer research.

Computer Science: Artificial Intelligence (AI) Computer Science: General Mathematics: Modeling
Published

New method improves efficiency of 'vision transformer' AI systems      (via sciencedaily.com)     Original source 

Vision transformers (ViTs) are powerful artificial intelligence (AI) technologies that can identify or categorize objects in images -- however, there are significant challenges related to both computing power requirements and decision-making transparency. Researchers have now developed a new methodology that addresses both challenges, while also improving the ViT's ability to identify, classify and segment objects in images.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Engineers report low-cost human biomarker sensor designs      (via sciencedaily.com)     Original source 

Researchers have developed a low-cost, RNA-based technology to detect and measure biomarkers, which can help decode the body's physiology. The presence of protein biomarkers can indicate chronic or acute conditions, from arthritis to cancer to bacterial infections, for which conventional tests can cost anywhere from $100 to upwards of $1,000. The new technology can perform the same measurement for about a dollar.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Zoology
Published

Honey bee colony aggression linked to gene regulatory networks      (via sciencedaily.com)     Original source 

In honey bees, the role a bee plays in the colony changes as they age. Younger bees perform duties inside the hive, such as nursing and wax building, while older bees transition to roles outside of the hive, either foraging for food (foragers) or defending the colony (soldiers). What determines whether older bees become foragers or soldiers is unknown, but a new studyexplores the genetic mechanisms underlying the collective behavior of colony defense, and how these mechanisms relate to the colony's overall aggression.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology
Published

Researchers show mobile elements monkeying around the genome      (via sciencedaily.com)     Original source 

Whole-genomic sequencing has revolutionized the amount and detail of genetic diversity now available to researchers to study. While the researchers previously had looked at a few hundred mobile elements or 'jumping genes,' primarily of the Alu and L1 types, they were now able to analyze over 200,000 elements computationally, confirming and expanding on previous studies. Their findings provide more evidence of the fluidity of species and continuous spread of mobile and transposable genetic elements.

Biology: Biochemistry Biology: Cell Biology Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Offbeat: Computers and Math Offbeat: General Offbeat: Plants and Animals
Published

A protein mines, sorts rare earths better than humans, paving way for green tech      (via sciencedaily.com)     Original source 

Rare earth elements, like neodymium and dysprosium, are a critical component to almost all modern technologies, from smartphones to hard drives, but they are notoriously hard to separate from the Earth's crust and from one another. Scientists have discovered a new mechanism by which bacteria can select between different rare earth elements, using the ability of a bacterial protein to bind to another unit of itself, or 'dimerize,' when it is bound to certain rare earths, but prefer to remain a single unit, or 'monomer,' when bound to others.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Marine Biology: Molecular Ecology: Sea Life Environmental: General Geoscience: Geochemistry Geoscience: Oceanography
Published

Phenomenal phytoplankton: Scientists uncover cellular process behind oxygen production      (via sciencedaily.com)     Original source 

According to new research, the amount of oxygen in one of 10 breaths was made possible thanks to a newly identified cellular mechanism that promotes photosynthesis in marine phytoplankton. The new study identifies how a proton pumping enzyme (known as VHA) aids in global oxygen production and carbon fixation from phytoplankton.

Anthropology: Early Humans Anthropology: General Biology: Biochemistry Biology: Evolutionary Biology: General Biology: Genetics Ecology: Extinction Ecology: Nature Offbeat: Earth and Climate Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Fossils
Published

Geneticists discover hidden 'whole genome duplication' that may explain why some species survived mass extinctions      (via sciencedaily.com)     Original source 

Geneticists have unearthed a major event in the ancient history of sturgeons and paddlefish that has significant implications for the way we understand evolution. They have pinpointed a previously hidden 'whole genome duplication' (WGD) in the common ancestor of these species, which seemingly opened the door to genetic variations that may have conferred an advantage around the time of a major mass extinction some 200 million years ago.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How the flu virus hacks our cells      (via sciencedaily.com)     Original source 

Influenza epidemics, caused by influenza A or B viruses, result in acute respiratory infection. They kill half a million people worldwide every year. These viruses can also wreak havoc on animals, as in the case of avian flu. A team has now identified how the influenza A virus manages to penetrate cells to infect them. By attaching itself to a receptor on the cell surface, it hijacks the iron transport mechanism to start its infection cycle. By blocking the receptor involved, the researchers were also able to significantly reduce its ability to invade cells. These results highlight a vulnerability that could be exploited to combat the virus.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Ecology: Endangered Species Offbeat: General Offbeat: Plants and Animals
Published

Plants can distinguish when touch starts and stops, study suggests      (via sciencedaily.com)     Original source 

Even without nerves, plants can sense when something touches them and when it lets go, a study has found. In a set of experiments, individual plant cells responded to the touch of a very fine glass rod by sending slow waves of calcium signals to other plant cells, and when that pressure was released, they sent much more rapid waves. While scientists have known that plants can respond to touch, this study shows that plant cells send different signals when touch is initiated and ended.