Showing 20 articles starting at article 381
< Previous 20 articles Next 20 articles >
Categories: Biology: Genetics, Ecology: Research
Published How seaweed became multicellular



A deep dive into macroalgae genetics has uncovered the genetic underpinnings that enabled macroalgae, or 'seaweed,' to evolve multicellularity. Three lineages of macroalgae developed multicellularity independently and during very different time periods by acquiring genes that enable cell adhesion, extracellular matrix formation, and cell differentiation, researchers report. Surprisingly, many of these multicellular-enabling genes had viral origins. The study, which increased the total number of sequenced macroalgal genomes from 14 to 124, is the first to investigate macroalgal evolution through the lens of genomics.
Published Innovative antiviral defense with new CRISPR tool



The rise of RNA viruses like SARS-CoV-2 highlights the need for new ways to fight them. RNA-targeting tools like CRISPR/Cas13 are powerful but inefficient in the cytoplasm of cells, where many RNA viruses replicate. Scientists have devised a solution: Cas13d-NCS. This new molecular tool allows CRISPR RNA molecules that are located within the nucleus of a cell to move to the cytoplasm, making it highly effective at neutralizing RNA viruses. This advancement opens doors for precision medicine and proactive viral defense strategies.
Published Researchers identify new genetic risk factors for persistent HPV infections



Human papillomavirus (HPV) is the second most common cancer-causing virus, accounting for 690,000 cervical and other cancers each year worldwide. While the immune system usually clears HPV infections, those that persist can lead to cancer, and a new finding suggests that certain women may have a genetic susceptibility for persistent or frequent HPV infections. These genetic variants could raise a woman's risk of getting cervical cancer from a high-risk HPV infection.
Published First step to untangle DNA: Supercoiled DNA captures gyrase like a lasso ropes cattle



Researchers reveal how DNA gyrase resolves DNA entanglements. The findings not only provide novel insights into this fundamental biological mechanism but also have potential practical applications. Gyrases are biomedical targets for the treatment of bacterial infections and the similar human versions of the enzymes are targets for many anti-cancer drugs. Better understanding of how gyrases work at the molecular level can potentially improve clinical treatments.
Published Genetic underpinnings of environmental stress identified in model plant



Researchers have identified 14 genes that thale cress -- a plant commonly used in genetic investigations since its genome is well documented -- express more when responding to five specific stressors, as well as eight genes that the plant suppresses.
Published Geobiology: New placozoan habitat discovered



Traces of DNA in the stomachs of predatory snails give a team og geobiologists new insights into the ecology of placozoans.
Published Ants in Colorado are on the move due to climate change



Ant species living in Boulder's foothills have shifted their habitat over the last six decades, potentially affecting local ecosystems, suggests a new study.
Published The genesis of our cellular skeleton, image by image



Cells contain various specialized structures -- such as the nucleus, mitochondria or peroxisomes -- known as 'organelles'. Tracing their genesis and determining their structure is fundamental to understanding cell function and the pathologies linked to their dysfunction.
Published Researchers discover how we perceive bitter taste



A new study reveals the detailed protein structure of the TAS2R14, a bitter taste receptor that allows us to perceive bitter taste. In addition to solving the structure of this taste receptor, the researchers were also able to determine where bitter-tasting substances bind to TAS2R14 and how they activate them. The findings may lead to the development of drugs that targeting taste receptors.
Published Cockayne syndrome: New insights into cellular DNA repair mechanism



Researchers decode repair mechanism during transcription of genetic information.
Published Deforestation harms biodiversity of the Amazon's perfume-loving orchid bees



A survey of orchid bees in the Brazilian Amazon, carried out in the 1990s, is shedding new light the impact of deforestation on the scent-collecting pollinators, which some view as bellwethers of biodiversity in the neotropics.
Published 'Teacher Toads' can save native animals from toxic cane toads



Scientists from Macquarie University have come up with an innovative way to stop cane toads killing native wildlife by training goannas to avoid eating the deadly amphibians.
Published Impact of climate change on marine life much bigger than previously known



Fish and invertebrate animals are far more affected by warmer and more acidic seawater than was previously known. The big gain of the new method is that more details become known about effects of climate change on species.
Published Humans can increase biodiversity, archaeological study shows



Through the ages, the presence of humans has increased the heterogeneity and complexity of ecosystems and has often had a positive effect on their biodiversity.
Published Machine learning method reveals chromosome locations in individual cell nucleus



Researchers have made a significant advancement toward understanding how the human genome is organized inside a single cell. This knowledge is crucial for analyzing how DNA structure influences gene expression and disease processes.
Published New diagnostic tool achieves accuracy of PCR tests with faster and simpler nanopore system



A new diagnostic tool developed by researchers can test for SARS-CoV-2 and Zika virus with the same or better accuracy as high-precision PCR tests in a matter of hours.
Published Different means to the same end: How a worm protects its chromosomes



Researchers have discovered that a worm commonly used in the study of biology uses a set of proteins unlike those seen in other studied organisms to protect the ends of its DNA.
Published Scientists discover new phage resistance mechanism in phage-bacterial arms race



Scientists describe a new mechanism impacting the phage-bacterial arms race, a nanosized epibiotic parasite, TM7x, which helps its host bacterium (a Schaalia odontolytica strain called XH001) achieve resistance to lytic phages.
Published Toothed whale echolocation organs evolved from jaw muscles



Genetic analysis finds evidence suggesting that acoustic fat bodies in the heads of toothed whales were once the muscles and bone marrow of the jaw.
Published Bringing multidrug-resistant pathogens to their knees



Multidrug-resistant bacterial infections that cannot be treated by any known antibiotics pose a serious global threat. A research team has now introduced a method for the development of novel antibiotics to fight resistant pathogens. The drugs are based on protein building blocks with fluorous lipid chains.