Showing 20 articles starting at article 541
< Previous 20 articles Next 20 articles >
Categories: Biology: Genetics, Ecology: Extinction
Published Ribosomes: Molecular wedge assists recycling



Researchers reveal how cells regenerate protein factories at endoplasmic reticulum.
Published Altering the circadian clock adapts barley to short growing seasons



To ensure that plants flower at the right time of year, they possess an internal clock, which enables them to measure the amount of daylight during a day. Biologists now describe that the mutation of a specific gene makes the flowering time of barley almost entirely independent of day length. This mutation can be useful for breeding varieties adapted to altered climatic conditions with relatively mild winters and hot, dry summers.
Published Compound vital for all life likely played a role in life's origin



A chemical compound essential to all living things has been synthesized in a lab in conditions that could have occurred on early Earth, suggesting it played a role at the outset of life.
Published Metabolic diseases may be driven by gut microbiome, loss of ovarian hormones



Mice that received fecal implants from donors that had their ovaries removed gained more fat mass and had greater expression of liver genes associated with inflammation, Type 2 diabetes, fatty liver disease and atherosclerosis. The findings may shed light on the greater incidence of metabolic dysfunction in postmenopausal women.
Published Damage to cell membranes causes cell aging



Researchers have discovered that damage to the cell membrane promotes cellular senescence, or cell aging.
Published Increasingly similar or different? Centuries-long analysis suggests biodiversity is differentiating and homogenizing to a comparable extent



The tendency of communities and the species within them to become more similar or more distinct across landscapes -- biotic homogenization and differentiation -- are approximately balanced, according to a new study. This analysis is the first of its kind to provide a comprehensive assessment of how local and regional biodiversity changes combine across landscapes over centuries.
Published Butterfly and moth genomes mostly unchanged despite 250 million years of evolution



Comparison of over 200 high-quality butterfly and moth genomes reveals key insights into their biology, evolution and diversification over the last 250 million years, as well as clues for conservation.
Published An awkward family reunion: Sea monsters are our cousins



The sea lamprey, a 500-million-year-old animal with a sharp-toothed suction cup for a mouth, is the thing of nightmares. A new study discovered that the hindbrain -- the part of the brain controlling vital functions like blood pressure and heart rate -- of both sea lampreys and humans is built using an extraordinarily similar molecular and genetic toolkit.
Published New system triggers cellular waste disposal



Established treatments for cancer and other diseases often focus on inhibiting harmful enzymes to mitigate their effects. However, a more innovative approach has emerged: harnessing the cell's natural waste disposal system not just to deactivate but to entirely eradicate these proteins. Researchers have previously demonstrated the efficacy of this approach through two distinct methods. Now they unveil a third system capable of targeting and disposing of previously inaccessible proteins.
Published Bridging diet, microbes, and metabolism: Implications for metabolic disorders



Mounting evidence suggests that the secret to understanding human health and combating metabolic diseases lies hidden within the microscopic world of our gut bacteria. Recent research reveals that a specific fatty acid produced by gut bacteria directly influences fat metabolism in animals. This research is pivotal as it sheds light on the complex interplay between the diet, gut microbiota, and host metabolic health, offering insights that could open new avenues in our approach to managing metabolic disorders.
Published Photosynthetic mechanism of purple sulfur bacterium adapted to low-calcium environments



Purple sulfur bacteria (PSB) convert light energy into chemical energy through photosynthesis. Interestingly, certain species can photosynthesize even in environments with low-calcium levels. Using cryo-electron microscopy, researchers unveiled the structure of light-harvesting complexes and elucidated the mechanism that facilitates photosynthesis under low-calcium conditions.
Published Researchers are using RNA in a new approach to fight HIV



A pharmacy associate professor has developed a novel nanomedicine loaded with genetic material called small interfering RNAs (siRNA) to fight human immunodeficiency virus (HIV) using gene therapy.
Published Artificial reefs help preserve coral reefs by shifting divers away from the natural ones, according to new long-term study of one in Eilat



Divers are essentially tourists who love coral reefs and invest a lot of time and effort to watch them. Unfortunately, divers also cause damage to corals, often unintentionally, through disturbing and resuspending sand, touching them, hitting them with their equipment, and scaring fish away. Artificial reefs have been proposed as a means of diverting diving pressure from the natural reef to alternative sites, thus preserving both dive tourism and the coral reef.
Published Nature's checkup: Surveying biodiversity with environmental DNA sequencing



A thousand kilometers south of Tokyo, far into the largest ocean on Earth, lies a chain of small, volcanic islands -- the Ogasawara Islands. Nature has been able to develop on its own terms here, far from both humans and the warm Kuroshio current, which acts like a shuttle, moving marine species from Taiwan, over the Ryukyu Islands, and up the Pacific coast of mainland Japan. With upwards of 70 % of trees and many animal species being endemic to the archipelago, the islands have been dubbed 'the Galapagos of the East', as they are valuable as both a biodiversity hotspot and a cradle of scientific discovery.
Published Scientists may have cracked the 'aging process' in species



Research shows the relationship between a species' age and its risk of going extinct could be accurately predicted by an ecological model called the 'neutral theory of biodiversity.'
Published Eating too much protein is bad for your arteries, and this amino acid is to blame



Consuming over 22% of dietary calories from protein can lead to increased activation of immune cells that play a role in atherosclerotic plaque formation and drive the disease risk, new study showed.
Published Toxoplasmosis: Evolution of infection machinery



Researchers have identified a protein that evolved concurrently with the emergence of cellular compartments crucial for the multiplication of the toxoplasmosis pathogen.
Published Online digital data and AI for monitoring biodiversity



Researchers propose a framework for integrating online digital data into biodiversity monitoring.
Published Asexual propagation of crop plants gets closer



When the female gametes in plants become fertilized, a signal from the sperm activates cell division, leading to the formation of new plant seeds. This activation can also be deliberately triggered without fertilization, as researchers have shown. Their findings open up new avenues for the asexual propagation of crop plants.
Published Root microbes may be the secret to a better tasting cup of tea



You'd think the complex flavor in a quality cup of tea would depend mainly on the tea varieties used to make it. But a new study shows that the making of a delicious cup of tea depends on another key ingredient: the collection of microbes found on tea roots. By altering that assemblage, the authors showed that they could make good-quality tea even better.