Showing 20 articles starting at article 341
< Previous 20 articles Next 20 articles >
Categories: Biology: Genetics, Ecology: Invasive Species
Published Unveiling the mysteries of cell division in embryos with timelapse photography



The beginning of life is shrouded in mystery. While the intricate dynamics of mitosis is well-studied in the so-called somatic cells -- the cells that have a specialized function, like skin and muscle cells -- they remain elusive in the first cells of our bodies, the embryonic cells. Embryonic mitosis is notoriously difficult to study in vertebrates, as live functional analyses and -imaging of experimental embryos are technically limited, which makes it hard to track cells during embryogenesis.
Published Giant viruses infect deadly parasite



The single-celled organism Naegleria fowleri ranks among the deadliest human parasites. Researchers have now discovered viruses that infect this harmful microbe. Named Naegleriavirus, these belong to the giant viruses, a group known for their unusually large particles and complex genomes.
Published Researchers unveil PI3K enzyme's dual accelerator and brake mechanisms



The enzyme PI3K plays a critical role in cell migration. Scientists have long understood this function. But researchers have recently unveiled that a subunit of this enzyme also has the ability to slam on the breaks to this process.
Published How parasites shape complex food webs



A new study sheds light on how parasites, often overlooked, can dramatically affect the balance between predator and prey populations. Researchers developed a groundbreaking mathematical framework that predicts when predators, prey, and parasites can coexist, considering factors like random fluctuations and parasite effects on both populations. This research provides a valuable tool for conservation by helping predict how parasites influence ecosystem resilience and informing strategies to protect vulnerable species.
Published Scientists unveil genetics behind development of gliding



Researchers explain the genomic and developmental basis of the patagium, the thin skin membrane that allows some mammalian species to soar through the air.
Published Researchers create artificial cells that act like living cells



Researchers describe the steps they took to manipulate DNA and proteins -- essential building blocks of life -- to create cells that look and act like cells from the body. This accomplishment, a first in the field, has implications for efforts in regenerative medicine, drug delivery systems and diagnostic tools.
Published Tropical fish are invading Australian ocean water



A study of shallow-water fish communities on rocky reefs in south-eastern Australia has found climate change is helping tropical fish species invade temperate Australian waters.
Published Liquid droplets shape how cells respond to change



New research has shown that cells regulate cAMP/PKA signaling by forming liquid droplets that segregate excess PKA catalytic subunits where they can do no harm. Some cancers may block the formation of liquid droplets, leading to hyperactive signaling and tumor formation.
Published AI can improve Alzheimer's treatment through the 'gut-brain axis'



Researchers are using artificial intelligence to uncover the link between the gut microbiome and Alzheimer's disease. Previous studies showed that Alzheimer's disease patients have changes in their gut bacteria as the disease develops. The study outlines a computational method to determine how bacterial byproducts called metabolites interact with receptors on cells and contribute to Alzheimer's disease.
Published Scientists discover the cellular functions of a family of proteins integral to inflammatory diseases



In a scientific breakthrough, researchers have revealed the biological mechanisms by which a family of proteins known as histone deacetylases (HDACs) activate immune system cells linked to inflammatory bowel disease (IBD) and other inflammatory diseases.
Published Protein network dynamics during cell division



An international team has mapped the movement of proteins encoded by the yeast genome throughout its cell cycle. This is the first time that all the proteins of an organism have been tracked across the cell cycle, which required a combination of deep learning and high-throughput microscopy.
Published The enemy within: How pathogens spread unrecognized in the body



Some pathogens hide inside human cells to enhance their survival. Researchers have uncovered a unique tactic certain bacteria use to spread in the body without being detected by the immune system. In their study, they reveal the crucial role of a bacterial nanomachine in this infection process.
Published Invasive species sound off about impending ecosystem changes



Anticipating changes to ecosystems is often at best an educated guess, but what if there was a way to better tune into possible changes occurring? Researchers have discovered that the silent growth of non-native invasive plants can affect the soundscape of an ecosystem. These altered soundscapes, the acoustic patterns of a landscape through space and time, may provide a key to better observing the hard-to-see physical and biological changes occurring in an ecosystem as they are beginning.
Published Key protein regulates immune response to viruses in mammal cells



Researchers have revealed the regulatory mechanism of a specific protein, TRBP, that plays a key role in balancing the immune response triggered by viral infections in mammal cells. These findings could help drive the development of antiviral therapies and nucleic acid medicines to treat genetic disorders.
Published Light show in living cells



Observing proteins precisely within cells is extremely important for many branches of research but has been a significant technical challenge -- especially in living cells, as the required fluorescent labeling had to be individually attached to each protein. The research group has now overcome this hurdle: With a method called 'vpCells,' it is possible to label many proteins simultaneously, using five different fluorescent colors.
Published Marine microbial populations: Potential sensors of the global change in the ocean



Animal and plant populations have been extensively studied, which has helped to understand ecosystem processes and evolutionary adaptations. However, this has not been the case with microbial populations due to the impossibility of isolating, culturing and analyzing the genetic content of the different species and their individuals in the laboratory. Therefore, although it is known that populations of microorganisms include a great diversity, this remains largely uncharacterized.
Published RNA's hidden potential: New study unveils its role in early life and future bioengineering



The origin of life continues to remain a matter of debate. The ribonucleic acid (RNA) world hypothesis proposes that 'ribozymes' which store genetic information and possess catalytic functions may have supported the activities of early life forms. Now, researchers explore how RNA elongation is regulated allosterically, shedding light on its impact on early life processes and offering insights into the fabrication of arbitrary RNA nanostructures with various modern applications.
Published Calorie restriction study reveals complexities in how diet impacts aging



The rate at which human cells age is influenced by multiple interconnected factors. New research examined how restricting calories influences telomere length and biological aging.
Published Solving a mini mystery of cell division



Trying to hit a target size before dividing seems like the best strategy for maintaining a precise cell size, but bacteria don't do that. Now we know why.
Published Plant sensors could act as an early warning system for farmers



Using a pair of sensors made from carbon nanotubes, researchers discovered signals that help plants respond to stresses such as heat, light, or attack from insects or bacteria. Farmers could use these sensors to monitor threats to their crops, allowing them to intervene before the crops are lost.