Showing 20 articles starting at article 621

< Previous 20 articles        Next 20 articles >

Categories: Biology: Genetics, Geoscience: Landslides

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Defect in fruit fly respiratory system may provide insights into human aortic aneurysms      (via sciencedaily.com)     Original source 

A team of researchers has gained new insights into the respiratory system of fruit flies -- the so-called tracheal system -- which could be important for future research into aneurysms. Scientists carried out genetic, cell biological and biochemical studies on Drosophila embryos. They found that the cells in the fruit fly's tracheal system are connected to the extracellular matrix by the proteins Dumpy and Piopio.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Genetics Biology: Microbiology Chemistry: Biochemistry Chemistry: General Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Sunflower extract fights fungi to keep blueberries fresh      (via sciencedaily.com)     Original source 

Opening a clamshell of berries and seeing them coated in fuzzy mold is a downer. And it's no small problem. Gray mold and other fungi, which cause fruit to rot, lead to significant economic losses and food waste. Now, researchers report that compounds from sunflower crop waste prevented rotting in blueberries. They suggest the food industry could use these natural compounds to protect against post-harvest diseases.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How eggs of the Zika-carrying mosquito survive desiccation      (via sciencedaily.com)     Original source 

Eggs of the mosquito that carries Zika virus can tolerate extended desiccation by altering their metabolism, according to a new study. The finding offers potential new ways to control the spread of this mosquito.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Zoology Ecology: Animals
Published

Bacteria can enhance host insect's fertility with implications for disease control      (via sciencedaily.com)     Original source 

New research reveals how the bacteria strain Wolbachia pipientis enhances the fertility of the insects it infects, an insight that could help scientists increase the populations of mosquitoes that do not carry human disease.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Zoology Ecology: Animals Offbeat: General Offbeat: Plants and Animals
Published

Finding the genes that help kingfishers dive without hurting their brains      (via sciencedaily.com)     Original source 

Scientists studied the genomes of 30 kingfisher species to try to identify the genes that allow kingfishers to dive headfirst into water without huring their brains. The researchers found that the diving birds have unusual mutations to the genes that produce tau: a protein that helps stabilize tiny structures in the brain, but which can build up in humans with traumatic brain injuries or Alzheimer's disease. The researchers suspect that these variations in the kingfishers' tau proteins might protect their brains when they dive.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Genetics Biology: Microbiology
Published

Study shows engineered gut bacteria can treat hypertension      (via sciencedaily.com)     Original source 

Newly published research proves that it's possible to treat high blood pressure by using specially engineered Lactobacillus paracasei to produce a protein called ACE2 in the gut, reducing gut angiotensin II and, in turn, lowering blood pressure. The study, done in lab rats that are predisposed to hypertension and unable to naturally produce ACE2, opens new doors in the pursuit of harnessing our body's own microbiome to regulate blood pressure.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species Environmental: General Environmental: Water Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Plants transformed into detectors of dangerous chemicals      (via sciencedaily.com)     Original source 

What if your house plant could tell you your water isn't safe? Scientists are closer to realizing this vision, having successfully engineered a plant to turn beet red in the presence of a banned, toxic pesticide. 

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Researchers develop DANGER analysis tool for the safer design of gene editing      (via sciencedaily.com)     Original source 

A team of researchers has developed a software tool that provides a way for the safer design of genome editing in all organisms with a transcriptome. For about a decade, researchers have used the CRISPR technology for genome editing. However, there are some challenges in the use of CRISPR. The new analysis system overcomes these challenges and allows researchers to perform safer on- and off-target assessments without a reference genome. It holds the potential for applications in medicine, agriculture, and biological research.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Offbeat: General Offbeat: Plants and Animals
Published

Generating clean electricity with chicken feathers      (via sciencedaily.com)     Original source 

Turning unused waste from food production into clean energy: Researchers are using chicken feathers to make fuel cells more cost-effective and sustainable.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Zoology
Published

Can golden retrievers live longer?      (via sciencedaily.com)     Original source 

Researchers have found a gene associated with longevity in golden retrievers, one of the most popular breeds of dogs.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology
Published

You say genome editing, I say natural mutation      (via sciencedaily.com)     Original source 

A plant geneticist and computational biologist teamed up to decipher the unpredictability of natural and engineered mutations in tomatoes. They discovered some combinations of mutations behave as expected while others are more erratic. Their work may help scientists find some order in the chaos of evolution and genome editing.

Biology: Biochemistry Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics
Published

Imprinted genes in the 'parenting hub' of the brain determine if mice are good parents      (via sciencedaily.com)     Original source 

Whether a mouse is a good or bad parent can be traced back to imprinted genes in key neurons in the 'parenting hub' in the brain, according to a new study.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry Computer Science: General Mathematics: Modeling
Published

Physical theory improves protein folding prediction      (via sciencedaily.com)     Original source 

Proteins are important molecules that perform a variety of functions essential to life. To function properly, many proteins must fold into specific structures. However, the way proteins fold into specific structures is still largely unknown. Researchers have developed a novel physical theory that can accurately predict how proteins fold. Their model can predict things previous models cannot. Improved knowledge of protein folding could offer huge benefits to medical research, as well as to various industrial processes.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Restoring the function of a human cell surface protein in yeast cells      (via sciencedaily.com)     Original source 

Yeast cells are widely used to study G protein-coupled receptors (GPCRs), a large group of cell surface proteins in humans. However, several of these proteins lose their function when introduced into yeast cells. To tackle this issue, researchers developed an innovative strategy to restore GPCR function in yeast cells by inducing random mutations. Their findings can help understand GPCRs better and could pave the way to therapeutic breakthroughs for many diseases.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Offbeat: General Offbeat: Plants and Animals
Published

Stolen genes allow parasitic control of behavior      (via sciencedaily.com)     Original source 

A research team has discovered that parasites manipulate their hosts using stolen genes that they likely acquired through a phenomenon called horizontal gene transfer.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Ecology: Invasive Species Ecology: Trees Geoscience: Geochemistry
Published

Yeast speeds discovery of medicinal compounds in plants      (via sciencedaily.com)     Original source 

Researchers have harnessed the power of baker's yeast to create a cost-effective and highly efficient approach for unraveling how plants synthesize medicinal compounds, and used the new method to identify key enzymes in a kratom tree.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Scientists uncover new way viruses fight back against bacteria      (via sciencedaily.com)     Original source 

A microscopic discovery will not only enable scientists to understand the microbial world around us but could also provide a new way to control CRISPR-Cas biotechnologies.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology
Published

New insights into the genetics of the common octopus: Genome at the chromosome level decoded      (via sciencedaily.com)     Original source 

Octopuses are fascinating animals -- and serve as important model organisms in neuroscience, cognition research and developmental biology. To gain a deeper understanding of their biology and evolutionary history, validated data on the composition of their genome is needed, which has been lacking until now. Scientists have now been able to close this gap and, in a new study, determined impressive figures: 2.8 billion base pairs -- organized in 30 chromosomes. What sounds so simple is the result of complex, computer-assisted genome analyses and comparisons with the genomes of other cephalopod species.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Environmental: General Geoscience: Environmental Issues
Published

Greener neighborhoods can protect us -- at the cellular level      (via sciencedaily.com)     Original source 

A new study finds that greenspace -- the vegetation in a neighborhood's yards, parks and public spaces -- has a positive impact on a key genetic marker associated with exposure to stress. However, the study also finds that the positive impact of greenspace isn't enough to compensate for other environmental challenges, such as air pollution.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Unlocking the secrets of cell behavior on soft substrates: A paradigm shift in mechanobiology      (via sciencedaily.com)     Original source 

A research group has developed a new method for studying how cancer cells function in softer and stiffer tissue environments. This insight challenges the existing paradigm, opening up new possibilities for research in cancer biology and tissue engineering.