Showing 20 articles starting at article 461
< Previous 20 articles Next 20 articles >
Categories: Biology: Genetics, Geoscience: Earth Science
Published Activation of innate immunity: Important piece of the puzzle identified



Researchers have deciphered the complex interplay of various enzymes around the innate immune receptor toll-like receptor 7 (TLR7), which plays an important role in defending our bodies against viruses.
Published Malaria may shorten leukocyte telomeres among sub-Saharan Africans



The length of telomeres in white blood cells, known as leukocytes, varies significantly among sub-Saharan African populations, researchers report. Moreover, leukocyte telomere length (LTL) is negatively associated with malaria endemicity and only partly explained by genetic factors.
Published Archaea can be picky parasites



A parasite that not only feeds of its host, but also makes the host change its own metabolism and thus biology. Microbiologists have shown this for the very first time in a specific group of parasitic microbes, so-called DPANN archea. Their study shows that these archaea are very 'picky eaters', which might drive their hosts to change the menu.
Published Key functions of therapeutically promising jumbo viruses



Viruses known as 'jumbo' phages are seen as a potential tool against deadly bacterial infections. But scientists must first decipher the extraordinary makeup of these mysterious viruses. Researchers have now uncovered a key piece of jumbo phage development that helps them counter bacteria.
Published Do earthquake hazard maps predict higher shaking than actually occurred?



A research team studied earthquake hazard maps from five countries and found that all the maps seemed to overpredict the historically observed earthquake shaking intensities. In analyzing the possible causes, the researchers discovered the issue was with the conversion equations used in comparing the maps predicting future quakes with actual shaking data, rather than systemic problems with the hazard modeling itself.
Published New computer algorithm supercharges climate models and could lead to better predictions of future climate change



A study describes a new computer algorithm which can be applied to Earth System Models to drastically reduce the time needed to prepare these in order to make accurate predictions of future climate change. During tests on models used in IPCC simulations, the algorithm was on average 10 times faster at spinning up the model than currently-used approaches, reducing the time taken to achieve equilibrium from many months to under a week.
Published Mystery behind huge opening in Antarctic sea ice solved



Researchers have discovered the missing piece of the puzzle behind a rare opening in the sea ice around Antarctica, which was nearly twice the size of Wales and occurred during the winters of 2016 and 2017. A study reveals a key process that had eluded scientists as to how the opening, called a polynya, was able to form and persist for several weeks.
Published Rock solid evidence: Angola geology reveals prehistoric split between South America and Africa



A research team has found that ancient rocks and fossils from long-extinct marine reptiles in Angola clearly show a key part of Earth's past -- the splitting of South America and Africa and the subsequent formation of the South Atlantic Ocean.
Published Marriage of synthetic biology and 3D printing produces programmable living materials



Scientists are harnessing cells to make new types of materials that can grow, repair themselves and even respond to their environment. These solid 'engineered living materials' are made by embedding cells in an inanimate matrix that's formed in a desired shape. Now, researchers have 3D printed a bioink containing plant cells that were then genetically modified, producing programmable materials. Applications could someday include biomanufacturing and sustainable construction.
Published Novel genetic plant regeneration approach without the application of phytohormones



Conventional plant regeneration approaches by cell culture require the external application of plant growth regulators, including hormones. However, optimizing culture conditions can be laborious. Now, researchers have developed a novel plant regeneration system that omits the need for hormone application by genetically regulating the expression of genes that control plant cell differentiation. Their work holds significant potential in the development of genetically modified plants in a simpler and cost-effective manner.
Published Climate change and mercury pollution stressed plants for millions of years



The link between massive flood basalt volcanism and the end-Triassic (201 million years ago) mass-extinction is commonly accepted. However, exactly how volcanism led to the collapse of ecosystems and the extinction of entire families of organisms is difficult to establish. Extreme climate change from the release of carbon dioxide, degradation of the ozone layer due to the injection of damaging chemicals, and the emissions of toxic pollutants, are all seen as contributing factors. One toxic element stands out: mercury.
Published New and improved way to grow the cells that give rise to the kidney's filtration system



Scientists report significant progress in cultivating nephron progenitor cells (NPCs), the cells destined to form the kidney's filtration system, the nephrons. NPCs hold immense promise for understanding kidney development, modeling diseases, and discovering new treatments. The team improved the chemical cocktail for generating and growing NPCs in the laboratory, enabling the sustained growth of both mouse and human NPCs in a simple 2-dimensional format.
Published Discovery of mechanism plants use to change seed oil could impact industrial, food oils



Researchers have discovered a new mechanism of oil biosynthesis and found a way to genetically engineer a type of test plant to more efficiently produce different kinds of seed oil that it otherwise wouldn't make. While the engineering is proof-of-concept, this discovery could lead to improved production of valuable oils used in food and by a range of industries. The modified plant overcame metabolic bottlenecks and produced significant amounts of an oil similar to castor oil that it doesn't naturally produce.
Published Unlocking the genetic mysteries behind plant adaptation: New insights into the evolution of a water-saving trait in the pineapple family (bromeliaceae)



Researchers have achieved a breakthrough in understanding how genetic drivers influence the evolution of a specific photosynthesis mechanism in Tillandsia (air plants). This sheds light on the complex actions that cause plant adaptation and ecological diversity.
Published Research on RNA editing illuminates possible lifesaving treatments for genetic diseases



The research explores how CRISPR can be used to edit RNA.
Published Study details a common bacterial defense against viral infection



Researchers report on the molecular assembly of one of the most common anti-phage systems -- from the family of proteins called Gabija -- that is estimated to be used by at least 8.5%, and up to 18%, of all bacteria species on Earth.
Published Genetic hope in fight against devastating wheat disease



Fungal disease Fusarium head blight (FHB) is on the rise due to increasingly humid conditions induced by climate change during the wheat growing season, but a fundamental discovery could help reduce its economic harm.
Published AI deciphers new gene regulatory code in plants and makes accurate predictions for newly sequenced genomes



Elucidating the relationship between the sequences of non-coding regulatory elements and their target genes is key to understanding gene regulation and its variation between plant species and ecotypes. Now, an international research team developed deep learning models that link gene sequence data with mRNA copy number for several plant species and predicted the regulatory effect of gene sequence variation.
Published Barley plants fine-tune their root microbial communities through sugary secretions



Different types of barley recruit distinct communities of soil microbes to grow around their roots by releasing a custom mix of sugars and other compounds, according to a new study.
Published Food in sight? The liver is ready!



What happens in the body when we are hungry and see and smell food? A team of researchers has now been able to show in mice that adaptations in the liver mitochondria take place after only a few minutes. Stimulated by the activation of a group of nerve cells in the brain, the mitochondria of the liver cells change and prepare the liver for the adaptation of the sugar metabolism. The findings could open up new avenues for the treatment of type 2 diabetes.