Showing 20 articles starting at article 521

< Previous 20 articles        Next 20 articles >

Categories: Archaeology: General, Biology: Genetics

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species Ecology: Invasive Species Ecology: Nature Ecology: Trees Environmental: General
Published

Asparagus and orchids are more similar than you think      (via sciencedaily.com)     Original source 

How is a beech leaf constructed? What determines the appearance of an asparagus? A new 'encyclopaedia' helps us learn more about the building blocks of plants. The encyclopaedia, probably the largest of its kind, could be used to improve targeted plant breeding efforts, to make them both more climate-resilient and more easily digestible.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

'Genomic time machine' reveals secrets of our DNA      (via sciencedaily.com)     Original source 

Researchers reveal a novel method to uncover bits of our genetic blueprint that come from ancient genetic parasites, offering fresh insights into human evolution and health.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Biology: Zoology
Published

A non-allergenic wheat protein for growing better cultivated meat      (via sciencedaily.com)     Original source 

As the world's population increases, cultivated or lab-grown meat -- animal muscle and fat cells grown in laboratory conditions -- has emerged as a potential way to satisfy future protein needs. And edible, inexpensive plant proteins could be used to grow these cell cultures. Now, researchers report that the non-allergenic wheat protein glutenin successfully grew striated muscle layers and flat fat layers, which could be combined to produce meat-like textures.

Anthropology: Early Humans Anthropology: General Archaeology: General Biology: Evolutionary Paleontology: Early Mammals and Birds Paleontology: Fossils Paleontology: General
Published

How did humans learn to walk? New evolutionary study offers an earful      (via sciencedaily.com)     Original source 

A new study, which centers on evidence from skulls of a 6-million-year-old fossil ape, Lufengpithecus, offers important clues about the origins of bipedal locomotion courtesy of a novel method: analyzing its bony inner ear region using three-dimensional CT-scanning. The inner ear appears to provide a unique record of the evolutionary history of ape locomotion.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Zoology Ecology: Sea Life
Published

Researchers map genome for cats, dolphins, birds, and dozens of other animals      (via sciencedaily.com)     Original source 

Researchers mapped genetic blueprints for 51 species including cats, dolphins, kangaroos, penguins, sharks, and turtles, a discovery that deepens our understanding of evolution and the links between humans and animals. The researchers developed novel algorithms and computer software that cut the sequencing time from months -- or decades in the case of the human genome -- to a matter of days.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Ecology: Trees
Published

Soap bark discovery offers a sustainability booster for the global vaccine market      (via sciencedaily.com)     Original source 

A valuable molecule sourced from the soapbark tree and used as a key ingredient in vaccines, has been replicated in an alternative plant host for the first time, opening unprecedented opportunities for the vaccine industry.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How HIV smuggles its genetic material into the cell nucleus      (via sciencedaily.com)     Original source 

Around one million individuals worldwide become infected with HIV, the virus that causes AIDS, each year. To replicate and spread the infection, the virus must smuggle its genetic material into the cell nucleus and integrate it into a chromosome. Research teams have now discovered that its capsid has evolved into a molecular transporter. As such, it can directly breach a crucial barrier, which normally protects the cell nucleus against viral invaders. This way of smuggling keeps the viral genome invisible to anti-viral sensors in the cytoplasm.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How macrophages regulate regenerative healing in spiny mice      (via sciencedaily.com)     Original source 

A team of researchers is delving deeper into the science behind how spiny mice can regenerate lost tissue and using what they learn to trigger regeneration in other types of mice -- advances which one day may be translated into humans. Whereas adult laboratory mice heal injuries with scar tissue, spiny mice have the unique ability to regrow lost skin and regenerate musculoskeletal tissues in their body.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Geoscience: Environmental Issues Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

The underground network: Decoding the dynamics of plant-fungal symbiosis      (via sciencedaily.com)     Original source 

The intricate dance of nature often unfolds in mysterious ways, hidden from the naked eye. At the heart of this enigmatic tango lies a vital partnership: the symbiosis between plants and a type of fungi known as arbuscular mycorrhizal (AM) fungi. New groundbreaking research delves into this partnership, revealing key insights that deepen our understanding of plant-AM fungi interactions and could lead to advances in sustainable agriculture.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How does HIV get into the cell's cenetr to kickstart infection?      (via sciencedaily.com)     Original source 

UNSW Sydney medical scientists have cracked a mystery whose solution has long eluded researchers. UNSW Sydney medical scientists have cracked a mystery whose solution has long eluded researchers.

Anthropology: Cultures Anthropology: General Archaeology: General Geoscience: Geochemistry
Published

New research challenges hunter-gatherer narrative      (via sciencedaily.com)     Original source 

Analysis of the remains of 24 individuals from the Wilamaya Patjxa and Soro Mik'aya Patjxa burial sites in Peru shows that early human diets in the Andes Mountains were composed of 80 percent plant matter and 20 percent meat.

Archaeology: General Biology: Biochemistry Biology: Evolutionary Ecology: Endangered Species Ecology: Extinction Ecology: Invasive Species Paleontology: Climate Paleontology: Fossils Paleontology: General
Published

Ancient brown bear genomes sheds light on Ice Age losses and survival      (via sciencedaily.com)     Original source 

The brown bear is one of the largest living terrestrial carnivores, and is widely distributed across the Northern Hemisphere. Unlike many other large carnivores that went extinct at the end of the last Ice Age (cave bear, sabretoothed cats, cave hyena), the brown bear is one of the lucky survivors that made it through to the present. The question has puzzled biologists for close to a century -- how was this so?

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Ecology: Endangered Species Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

New study unveils how plants control the production of reactive oxygen species      (via sciencedaily.com)     Original source 

Reactive oxygen species (ROS), though generally regarded as toxic byproducts of biological processes, serve many important functions in plants. However, the precise mechanism that plants use to regulate the production of ROS remains elusive. In a recent study, researchers clarified how an important ROS-generating enzyme is activated, revealing mechanisms likely conserved across all land plants. Their findings could pave the way for breakthroughs in agricultural and environmental remediation tools.

Anthropology: General Biology: Biochemistry Biology: Botany Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Ecology: Endangered Species Ecology: Nature Environmental: Biodiversity Paleontology: Fossils
Published

Complex green organisms emerged a billion years ago      (via sciencedaily.com)     Original source 

Of all the organisms that photosynthesize, land plants have the most complex form. How did this morphology emerge? A team of scientists has taken a deep dive into the evolutionary history of morphological complexity in streptophytes, which include land plants and many green algae. Their research allowed them to go back in time to investigate lineages that emerged long before land plants existed.