Showing 20 articles starting at article 121
< Previous 20 articles Next 20 articles >
Categories: Biology: Genetics, Chemistry: General
Published MicroRNA study sets stage for crop improvements



MicroRNAs can make plants more capable of withstanding drought, salinity, pathogens and more. However, in a recent study scientists showed just how much we didn't know about the intricate processes plants use to produce them.
Published How an emerging disease in dogs is shedding light on cystic fibrosis



A canine gallbladder disease that involves the accumulation of abnormal mucus similar to that seen in human cystic fibrosis (CF) patients is caused by improper expression of the gene associated with CF in humans. The finding could have implications for human CF patients as well as for animal models of CF.
Published From genes to jeans: New genetic insights may lead to drought resilient cotton



Cotton is woven into the very fabric of our lives, from soft T-shirts to comfortable jeans and cozy bedsheets. It's the world's leading renewable textile fiber and the backbone of a global industry worth billions. As climate change intensifies, cotton farmers face increasing challenges from drought and heat. However, new research offers hope for developing more resilient varieties that can maintain high yields even under water-stressed conditions.
Published Robotics: Self-powered 'bugs' can skim across water to detect environmental data



Researchers have developed a self-powered 'bug' that can skim across the water, and they hope it will revolutionize aquatic robotics.
Published New progress in research into malignant catarrhal fever in cattle



A research team has published a groundbreaking study on malignant catarrhal fever (MCF). This disease is caused by the alcelaphine gammaherpesvirus 1 (AlHV-1), which infects its natural host, the wildebeest. This study sheds light on the mechanisms by which this virus, which is asymptomatic and latent in the wildebeest, causes an oligoclonal expansion of CD8+ T lymphocytes in cattle, leading to the development of MCF.
Published Researchers decipher new molecular mechanisms related to biological tissue regeneration



A study opens new perspectives to better understand how the molecular mechanisms involved in regenerative medicine work. The study focuses on tumor necrosis factor- (TNF- ) and its receptors TNFR, molecules of key interest in biomedicine due to their involvement in multiple diseases such as obesity related to type 2 diabetes mellitus, inflammatory bowel disease and several types of cancer.
Published New additive process can make better -- and greener -- high-value chemicals



Researchers have achieved a significant breakthrough that could lead to better -- and greener -- agricultural chemicals and everyday products. Using a process that combines natural enzymes and light, the team developed an eco-friendly way to precisely mix fluorine, an important additive, into chemicals called olefins -- hydrocarbons used in a vast array of products, from detergents to fuels to medicines. This groundbreaking method offers an efficient new strategy for creating high-value chemicals with potential applications in agrochemicals, pharmaceuticals, renewable fuels, and more.
Published New understanding of fly behavior has potential application in robotics, public safety



Scientists have identified an automatic behavior in flies that helps them assess wind conditions -- its presence and direction -- before deploying a strategy to follow a scent to its source. The fact that they can do this is surprising -- can you tell if there's a gentle breeze if you stick your head out of a moving car? Flies aren't just reacting to an odor with a preprogrammed response: they are responding in context-appropriate manner. This knowledge potentially could be applied to train more sophisticated algorithms for scent-detecting drones to find the source of chemical leaks.
Published Fresh light on the path to net zero



Researchers have used magnetic fields to reveal the mystery of how light particles split. Scientists are closer to giving the next generation of solar cells a powerful boost by integrating a process that could make the technology more efficient by breaking particles of light photons into small chunks.
Published Pioneering measurement of the acidity of ionic liquids using Raman spectroscopy



A study has made it possible to estimate experimentally the energy required to transfer protons from water to ionic liquids.
Published Lampreys possess a 'jaw-dropping' evolutionary origin



Lampreys are one of only two living jawless vertebrates Jaws are formed by a key stem cell population called the neural crest New research reveals the gene regulatory changes that may explain morphological differences between jawed and jawless vertebrates.
Published New drug shows promise in clearing HIV from brain



An experimental drug originally developed to treat cancer may help clear HIV from infected cells in the brain, according to a new study. By targeting infected cells in the brain, drug may clear virus from hidden areas that have been a major challenge in HIV treatment.
Published 'Miracle' filter turns store-bought LEDs into spintronic devices



Scientists transformed existing optoelectronic devices into ones that can control electron spin at room temperature, without a ferromagnet or magnetic field. Researchers replaced the electrodes of store-bought LEDs with a patented spin filter made from hybrid organic-inorganic halide perovskite.
Published Chemical analyses find hidden elements from renaissance astronomer Tycho Brahe's alchemy laboratory



Danish Tycho Brahe was most famous for his contributions to astronomy. However, he also had a well-equipped alchemical laboratory where he produced secret medicines for Europe's elite.
Published Indoor solar cells that maximize the use of light energy



Chemists have synthesized materials that can improve solar elements for indoor use. Such photovoltaic cells, which can also be integrated into various electronic devices, generate electricity even in low-light conditions.
Published A recipe for zero-emissions fuel: Soda cans, seawater, and caffeine



Engineers discovered that when the aluminum in soda cans is purified and mixed with seawater, the solution produces hydrogen -- which can power an engine or fuel cell without generating carbon emissions. The reaction can be sped up by adding caffeine.
Published Better way to produce green hydrogen



Researchers have developed a material that shows a remarkable ability to convert sunlight and water into clean energy.
Published Tackling industrial emissions begins at the chemical reaction



Researchers are proposing a new way to curb industrial emissions, by tapping into the 'atomic intelligence' of liquid metals to deliver greener and more sustainable chemical reactions.
Published Researchers discover faster, more energy-efficient way to manufacture an industrially important chemical



The reactivity of zirconium on silicon nitride enhances the conversion of propane into propylene, a key commodity chemical needed to make polypropylene. This finding hints at the reactivity researchers might achieve with other nontraditional catalysts.
Published Researchers develop innovative battery recycling method



A research team is tackling the environmental issue of efficiently recycling lithium ion batteries amid their increasing use.