Showing 20 articles starting at article 161
< Previous 20 articles Next 20 articles >
Categories: Biology: Genetics, Chemistry: General
Published Organs on demand? Scientists print voxel building blocks



Scientists are bioprinting 3D structures with a material that is a close match for human tissue, paving the way for true biomanufacturing.
Published 3D printing of light-activated hydrogel actuators



An international team of researchers has embedded gold nanorods in hydrogels that can be processed through 3D printing to create structures that contract when exposed to light -- and expand again when the light is removed. Because this expansion and contraction can be performed repeatedly, the 3D-printed structures can serve as remotely controlled actuators.
Published Genome study informs restoration of American chestnut tree



Researchers use genomes to help restore the American chestnut population and adjust species breeding to the changing climate.
Published Waste Styrofoam can now be converted into polymers for electronics



A new study describes a chemical reaction that can convert Styrofoam into a high-value conducting polymer known as PEDOT:PSS. Researchers also noted that the upgraded plastic waste can be successfully incorporated into functional electronic devices, including silicon-based hybrid solar cells and organic electrochemical transistors.
Published Chemists design novel method for generating sustainable fuel



Chemists have been working to synthesize high-value materials from waste molecules for years.
Published The rhythm led by plants is crucial for symbiosis with nutrient-providing bacteria



Recent research on Lotus japonicus, a model leguminous plant, has unveiled that the interaction between legume roots and rhizobia is characterized by periodic gene expression with a six-hour rhythm. This rhythmic gene expression influences the regions of the root susceptible to rhizobial infection and the distribution of nodules. It was also discovered that the plant hormone cytokinin is crucial for maintaining this gene expression rhythm.
Published New humidity-driven membrane to remove carbon dioxide from the air



A new ambient-energy-driven membrane that pumps carbon dioxide out of the air has been developed by researchers.
Published 'Secret' hidden structure paves new way of making more efficient and stable perovskite solar cells



Researchers has revealed the existence of surface concavities on individual crystal grains -- which are the fundamental blocks -- of perovskite thin films, and have unraveled their significant effects on the film properties and reliability. Based on this discovery, the team pioneered a new way of making perovskite solar cells more efficient and stable via a chemo-elimination of these grain surface concavities.
Published Converting wastewater to fertilizer with fungal treatment



Creating fertilizers from organic waste can help reduce the consumption of fossil fuels and promote sustainable production. One way of doing this is through hydrothermal liquefaction (HTL), which converts biomass into biocrude oil through a high-temperature, high-pressure process. Two studies explore the use of a fungal treatment to convert the leftover wastewater into fertilizer for agricultural crops.
Published Small animals acquire genes from bacteria that can produce antibiotics



A group of small, freshwater animals (bdelloid rotifers) protect themselves from infections using antibiotic recipes 'stolen' from bacteria, according to new research. This raises the potential that rotifers are producing novel antimicrobials that may be less toxic to animals, including humans, than those we develop from bacteria and fungi.
Published Novel electrode for improving flowless zinc-bromine battery



The flowless zinc-bromine battery (FLZBB) is a promising alternative to flammable lithium-ion batteries due to its use of non-flammable electrolytes. However, it suffers from self-discharge due to the crossover of active materials, generated at the positive graphite felt (GF) electrode, to the negative electrode, significantly affecting performance. Now, researchers have developed a novel nitrogen-doped mesoporous carbon-coated GF electrode that effectively suppresses self-discharge. This breakthrough can lead to practical applications of FLZBB in energy storage systems.
Published Secrets behind viral precision



New research is shedding light on how viruses ensure their survival by precisely timing the release of new viruses. The discovery offers a new theoretical framework for understanding these dynamic biological phenomena.
Published Microbes found to destroy certain 'forever chemicals'



An environmental engineering team has discovered that specific bacterial species can cleave the strong fluorine-to-carbon bond certain kinds of 'forever chemical' water pollutants, offering promise for low-cost treatments of contaminated drinking water.
Published Soft, stretchy 'jelly batteries' inspired by electric eels



Researchers have developed soft, stretchable 'jelly batteries' that could be used for wearable devices or soft robotics, or even implanted in the brain to deliver drugs or treat conditions such as epilepsy.
Published New technique pinpoints nanoscale 'hot spots' in electronics to improve their longevity



Researchers engineered a new technique to identify at the nanoscale level what components are overheating in electronics and causing their performance to fail.
Published Ancient viruses fuel modern-day cancers



The human genome is filled with flecks of DNA left behind by viruses that infected primate ancestors tens of millions of years ago. Scientists used to think they were harmless, but new research shows that, when reawakened, they help cancer survive and thrive.
Published Discovery of a hybrid lineage offers clues to how trees adapt to climate change



The discovery of a hybrid population of poplar trees in western Wyoming has provided insight into how natural hybridization informs the evolution of many plant species, according to researchers. They also said their discovery suggests that genetic exchange between species may be critical for adaptation to environmental change.
Published Paleolithic diets are not without risks



High-protein diets, known as 'Paleolithic diets', are popular. Using mouse models, scientists have studied their impact. While effective in regulating weight and stabilizing diabetes, these diets are not without risks. Excess protein greatly increases ammonium production, overwhelming the liver. Excess ammonium can cause neurological disorders and, in severe cases, lead to coma. These results suggest caution when following these diets.
Published Physicists develop new theory describing the energy landscape formed when quantum particles gather together



An international team of physicists has proven new theorems in quantum mechanics that describe the 'energy landscapes' of collections of quantum particles. Their work addresses decades-old questions, opening up new routes to make computer simulation of materials much more accurate. This, in turn, may help scientists design a suite of materials that could revolutionize green technologies.
Published Bridging the 'Valley of Death' in carbon capture



PrISMa is a new platform that uses advanced simulations and machine learning to streamline carbon capture technologies, by taking into account the perspectives of diverse stakeholders early in the research process.