Showing 20 articles starting at article 221
< Previous 20 articles Next 20 articles >
Categories: Biology: Genetics, Chemistry: General
Published New extremely fast carbon storage technology



A new way to store carbon captured from the atmosphere works much faster than current methods without the harmful chemical accelerants they require.
Published New bio-based tool quickly detects concerning coronavirus variants



Researchers have developed a bioelectric device that can detect and classify new variants of coronavirus to identify those that are most harmful. It has the potential to do the same with other viruses, as well.
Published Hexagonal perovskite oxides: Electrolytes for next-generation protonic ceramic fuel cells



Researchers have identified hexagonal perovskite-related oxides as materials with exceptionally high proton conductivity and thermal stability. Their unique crystal structure and large number of oxygen vacancies enable full hydration and high proton diffusion, making these materials ideal candidates as electrolytes for next-generation protonic ceramic fuel cells that can operate at intermediate temperatures without degradation.
Published Genomic data integration improves prediction accuracy of apple fruit traits



Genotyping techniques can be used to select fruit trees with desired traits at the seedling stage, increasing the efficiency of fruit tree breeding. However, so far, there are multiple different genotyping systems, each generating distinct datasets. In a recent study, Japanese scientists revealed that integrating genomic data obtained with different genotyping systems can effectively combine with historical data, leveraging the accuracy of genomic predictions.
Published Visualizing short-lived intermediate compounds produced during chemical reactions



Immobilizing small synthetic molecules inside protein crystals proves to be a promising avenue for studying intermediate compounds formed during chemical reactions, scientists report. By integrating this method with time-resolved serial femtosecond crystallography, they successfully visualized reaction dynamics and rapid structural changes occurring within reaction centers immobilized inside protein crystals. This innovative strategy holds significant potential for the intelligent design of drugs, catalysts, and functional materials.
Published GeneMAP discovery platform will help define functions for 'orphan' metabolic proteins



Researchers have developed a discovery platform to probe the function of genes involved in metabolism -- the sum of all life-sustaining chemical reactions. The investigators used the new platform, called GeneMAP (Gene-Metabolite Association Prediction), to identify a gene necessary for mitochondrial choline transport.
Published Ionic liquids: 'Don't shake it'



Chemists have develop innovative ionic liquid synthesis and purification technology.
Published Engineers find a way to protect microbes from extreme conditions



Researchers have now developed a new way to make microbes hardy enough to withstand extreme conditions such as heat and the manufacturing processes used to formulate the microbes into powders or pills for long-term storage.
Published Not so selfish after all: Viruses use freeloading genes as weapons



Certain pieces of DNA have been labeled as 'selfish genetic elements' due to notions that they don't contribute to a host organism's survival. Instead, researchers have now discovered that these elements have been weaponized and play a crucial role by cutting off a competitor's ability to reproduce.
Published New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications



A team has discovered that the new organic molecule thienyl diketone exhibits high-efficiency phosphorescence, achieving a rate over ten times faster than traditional materials. This breakthrough provides new guidelines for developing rare metal-free organic phosphorescent materials, promising advancements in applications like organic EL displays, lighting, and cancer diagnostics.
Published Never-before-seen view of gene transcription captured



New tech reveals findings that address long-standing theories about how bacteria begin the process of making RNA from DNA.
Published Do genes-in-pieces code for proteins that fold in pieces?



A new study offers new insights into the evolution of foldable proteins.
Published Researchers uncover key mechanisms in chromosome structure development



Researchers are making strides in understanding how chromosome structures change throughout the cell's life cycle.
Published Chemists synthesize an improved building block for medicines



Research could help drug developers improve the safety profiles of medications and reduce side effects.
Published Mapping the surfaces of MXenes, atom by atom, reveals new potential for the 2D materials



In the decade since their discovery, the family of two-dimensional materials called MXenes has shown a great deal of promise for applications ranging from water desalination and energy storage to electromagnetic shielding and telecommunications, among others. While researchers have long speculated about the genesis of their versatility, a recent study has provided the first clear look at the surface chemical structure foundational to MXenes' capabilities.
Published Using visible light to make pharmaceutical building blocks



Chemists have discovered a way to use visible light to synthesize a class of compounds particularly well suited for use in pharmaceuticals. The class of compounds, called azetidines, had been previously identified as a good candidate to build therapeutic drugs, but the compounds are difficult to produce in chemical reactions. Now, a team has developed a method to produce a specific class of azetidines called monocyclic azetidines using visible light and a photocatalyst.
Published Optoelectronics gain spin control from chiral perovskites and III-V semiconductors



A research effort has made advances that could enable a broader range of currently unimagined optoelectronic devices.
Published Exploring the chemical space of the exposome: How far have we gone?



Scientists have taken on the daunting challenge of mapping all the chemicals around us. They take inventory of the available science and conclude that currently a real pro-active chemical management is not feasible. To really get a grip on the vast and expanding chemical universe, they advocate the use of machine learning and AI, complementing existing strategies for detecting and identifying all molecules we are exposed to.
Published A new breakthrough in understanding regeneration in a marine worm



The sea worm Platynereis dumerilii is only a few centimeters long but has a remarkable ability: in just a few days, it can regenerate entire parts of its body after an injury or amputation. By focusing more specifically on the mechanisms at play in the regeneration of this worm's tail, a research team has observed that gut cells play a role in the regeneration of the intestine as well as other tissues such as muscle and epidermis.
Published True scale of carbon impact from long-distance travel revealed



The reality of the climate impact of long-distance passenger travel has been revealed in new research.