Showing 20 articles starting at article 281

< Previous 20 articles        Next 20 articles >

Categories: Biology: Genetics, Paleontology: Fossils

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Cellular activity hints that recycling is in our DNA      (via sciencedaily.com)     Original source 

Introns are perhaps one of our genome's biggest mysteries. They are DNA sequences that interrupt the sensible protein-coding information in your genes, and need to be 'spliced out.'

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Biology: Zoology
Published

New sex-determining mechanism in African butterfly discovered      (via sciencedaily.com)     Original source 

In a study of a species of African butterfly, researchers have discovered a previously undescribed molecular mechanism of how the sex of an embryo is initially specified.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

An epigenome editing toolkit to dissect the mechanisms of gene regulation      (via sciencedaily.com)     Original source 

A recent study led to the development of a powerful epigenetic editing technology. The system unlocks the ability to precisely program chromatin modifications at any specific position in the genome, to understand their causal role in transcription regulation. This innovative approach will help to investigate the role of chromatin modifications in many biological processes, and to program desired gene activity responses, which may prove useful in disease settings.

Biology: Marine Ecology: Sea Life Environmental: Ecosystems Environmental: Water Geoscience: Oceanography Paleontology: Climate Paleontology: Fossils Paleontology: General
Published

Human activity is making it harder for scientists to interpret oceans' past      (via sciencedaily.com)     Original source 

New research shows human activity is significantly altering the ways in which marine organisms are preserved, with lasting effects that can both improve and impair the fossil record.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Progression of herpesvirus infection remodels mitochondrial organization and metabolism      (via sciencedaily.com)     Original source 

Researchers have found that herpesvirus infection modifies the structure and normal function of the mitochondria in the host cell. The new information will help to understand the interaction between herpesvirus and host cells. Knowledge can be utilized in the development of viral treatments.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

How a 'conductor' makes sense of chaos in early mouse embryos      (via sciencedaily.com)     Original source 

The earliest stages of mammalian embryo development are like an orchestra performance, where everyone must play at the exact right moment and in perfect harmony. New research identifies one of the conductors making sense of the chaos.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Ecology: Endangered Species
Published

Free-forming organelles help plants adapt to climate change      (via sciencedaily.com)     Original source 

Plants' ability to sense light and temperature, and their ability to adapt to climate change, hinges on free-forming structures in their cells whose function was, until now, a mystery. Researchers have now determined how these structures work on a molecular level, as well as where and how they form.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology
Published

Using advanced genetic techniques, scientists create mice with traits of Tourette disorder      (via sciencedaily.com)     Original source 

In research that may be a step forward toward finding personalized treatments for Tourette disorder, scientists have bred mice that exhibit some of the same behaviors and brain abnormalities seen in humans with the disorder.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

High-pressure spectroscopy: Why 3,000 bars are needed to take a comprehensive look at a protein      (via sciencedaily.com)     Original source 

Why 3,000 bars are needed to take a comprehensive look at a protein: Researchers present a new high-pressure spectroscopy method to unravel the properties of proteins' native structures.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Ecology: Endangered Species Ecology: Nature
Published

Genomes of 'star algae' shed light on origin of plants      (via sciencedaily.com)     Original source 

Land plants cover the surface of our planet and often tower over us. They form complex bodies with multiple organs that consist of a broad range of cell types. Developing this morphological complexity is underpinned by intricate networks of genes, whose coordinated action shapes plant bodies through various molecular mechanisms. All of these magnificent forms burst forth from a one-off evolutionary event: when plants conquered Earth's surface, known as plant terrestrialization.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How E. coli get the power to cause urinary tract infections      (via sciencedaily.com)     Original source 

New research examines how the bacteria Escherichia coli, or E. coli -- responsible for most UTIs -- is able to use host nutrients to reproduce at an extraordinarily rapid pace during infection despite the near sterile environment of fresh urine.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species Environmental: Water Geoscience: Environmental Issues
Published

Plants utilize drought stress hormone to block snacking spider mites      (via sciencedaily.com)     Original source 

Recent findings that plants employ a drought-survival mechanism to also defend against nutrient-sucking pests could inform future crop breeding programs aimed at achieving better broadscale pest control.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

New discovery of a mechanism that controls cell division      (via sciencedaily.com)     Original source 

Researchers have discovered that how a special protein complex called the Mediator moves along genes in DNA may have an impact on how cells divide. The discovery may be important for future research into the treatment of certain diseases.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Novel chemical tool for understanding membrane remodeling in the cell      (via sciencedaily.com)     Original source 

Researchers describe a natural product-like molecule, Tantalosin, that inhibits interaction between two proteins in complexes that reshape membranes inside the cell. The findings lead to a deeper understanding of how membrane remodeling works in human cells and future development of new drugs.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Scientists track 'doubling' in origin of cancer cells      (via sciencedaily.com)     Original source 

Working with human breast and lung cells, scientists say they have charted a molecular pathway that can lure cells down a hazardous path of duplicating their genome too many times, a hallmark of cancer cells.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology
Published

Deeper understanding of malaria parasite development unlocks opportunities to block disease spread      (via sciencedaily.com)     Original source 

Natural malaria infections have been genetically analysed at a higher resolution than ever before, giving insights that could help understand and block transmission.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Promising new treatment strategy for deadly flu-related brain disorders      (via sciencedaily.com)     Original source 

Researchers have found that a brain disorder associated with flu (influenza-associated encephalopathy, or IAE) can be caused by the influenza virus entering the brain from the blood via endothelial cells. In these cells, the researchers observed viral protein accumulation, suggesting that antivirals targeting viral transcription/translation may be useful treatments for some patients. Given the lack of effective treatments for IAE, this finding will likely improve patient care and reduce IAE-related deaths worldwide.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Activation of innate immunity: Important piece of the puzzle identified      (via sciencedaily.com)     Original source 

Researchers have deciphered the complex interplay of various enzymes around the innate immune receptor toll-like receptor 7 (TLR7), which plays an important role in defending our bodies against viruses.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics
Published

Malaria may shorten leukocyte telomeres among sub-Saharan Africans      (via sciencedaily.com)     Original source 

The length of telomeres in white blood cells, known as leukocytes, varies significantly among sub-Saharan African populations, researchers report. Moreover, leukocyte telomere length (LTL) is negatively associated with malaria endemicity and only partly explained by genetic factors.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Archaea can be picky parasites      (via sciencedaily.com)     Original source 

A parasite that not only feeds of its host, but also makes the host change its own metabolism and thus biology. Microbiologists have shown this for the very first time in a specific group of parasitic microbes, so-called DPANN archea. Their study shows that these archaea are very 'picky eaters', which might drive their hosts to change the menu.