Showing 20 articles starting at article 61
< Previous 20 articles Next 20 articles >
Categories: Biology: Genetics, Chemistry: Biochemistry
Published Researchers call for genetically diverse models to drive innovation in drug discovery



Researchers unveiled an approach to drug discovery that could revolutionize how we understand and treat diseases. Their commentary explains the limitations of studies using traditional mouse models and proposes using genetically diverse mice and mouse and human cells to better predict human responses to drugs and diseases.
Published Exciting advance in stem cell therapy



A new technique for mechanically manipulating stem cells could lead to new stem cell treatments, which have yet to fulfill their therapeutic potential.
Published Halogen bonding for selective electrochemical separation, path to sustainable chemical processing demonstrated



A team has reported the first demonstration of selective electrochemical separation driven by halogen bonding. This was achieved by engineering a polymer that modulates the charge density on a halogen atom when electricity is applied. The polymer then attracts only certain targets -- such as halides, oxyanions, and even organic molecules -- from organic solutions, a feature that has important implications for pharmaceuticals and chemical synthesis processes.
Published Surprising insight into cancer comes from unique plant species that find different solutions to evolutionary challenges



A study has shown that different plant species tackle the same evolutionary hurdle in different ways, and the findings may give insight into aggressive forms of cancer.
Published Rewriting the evolutionary history of critical components of the nervous system



A new study has rewritten the conventionally understood evolutionary history of certain ion channels -- proteins critical for electrical signaling in the nervous system. The study shows that the Shaker family of ion channels were present in microscopic single cell organisms well before the common ancestor of all animals and thus before the origin of the nervous system.
Published Breakthrough in nanotechnology: Viewing the invisible with advanced microscopy



Scientists have made a groundbreaking discovery in the field of nanotechnology. They have developed a novel microscopy method that allows for the unprecedented visualization of nanostructures and their optical properties.
Published Starvation and adhesion drive formation of keratinocyte patterns in skin



Cell-cell adhesion-induced patterning in keratinocytes can be explained by just starvation and strong adhesion researchers find.
Published Study reveals oleoyl-ACP-hydrolase underpins lethal respiratory viral disease



Respiratory infections can be severe, even deadly, in some individuals, but not in others. Scientists have gained new understanding of why this is the case by uncovering an early molecular driver that underpins fatal disease. Oleoyl-ACP-hydrolase (OLAH) is an enzyme involved in fatty acid metabolism. A study shows that OLAH drives severe disease outcomes.
Published Researchers ID body's 'quality control' regulator for protein folding



Anyone who's tried to neatly gather a fitted sheet can tell you: folding is hard. Get it wrong with your laundry and the result can be a crumpled, wrinkled mess of fabric, but when folding fails among the approximately 7,000 proteins with an origami-like complexity that regulate essential cellular functions, the result can lead to one of a multitude of serious diseases ranging from emphysema and cystic fibrosis to Alzheimer's disease. Fortunately, our bodies have a quality-control system that identifies misfolded proteins and marks them either for additional folding work or destruction, but how, exactly, this quality-control process functions is not entirely known. Researchers have now made a major leap forward in our understanding of how this quality-control system works by discovering the 'hot spot' where all the action takes place.
Published Why carbon nanotubes fluoresce when they bind to certain molecules



Nanotubes can serve as biosensors. They change their fluorescence when they bind to certain molecules. Until now, it was unclear why. Researchers have gained new insights into the cause of the fluorescence.
Published How mortal filaments' self-assemble and maintain order: Align or die



A previously unknown mechanism of active matter self-organization essential for bacterial cell division follows the motto 'dying to align': Misaligned filaments 'die' spontaneously to form a ring structure at the center of the dividing cell. The work could find applications in developing synthetic self-healing materials.
Published Breakthrough heart MRI technique accurately predicts heart failure risk in general population



MRI scans could replace invasive heart tests, as new research shows they can reliably estimate pressures inside the heart to predict if a patient will develop heart failure.
Published Treating radiation wounds with aspirin hydrogels



Radiation is a powerful tool for treating cancer, but prolonged exposure can damage the skin. Radiation-induced skin injuries are painful and increase a person's chances of infection and long-term inflammation. Now, researchers report an aspirin-containing hydrogel that mimics the nutrient-rich fluid between cells and accelerates healing of skin damaged by radiation in animals. With further development, the new salve could provide effective and rapid wound healing for humans.
Published Taking a 'one in a million' shot to tackle dopamine-linked brain disorders



With the help of a tiny, transparent worm called Caenorhabditis elegans, researchers have identified novel players in dopamine signaling by taking advantage of a powerful platform generated via the Million Mutation Project (MMP) for the rapid identification of mutant genes based on their functional impact. They can seek insights from simpler organisms whose genes bear striking similarity to those found in humans and where opportunities for genetic insights to disease can be pursued more efficiently and inexpensively.
Published An appetizer can stimulate immune cells' appetite, a boon for cancer treatments



The body has a veritable army constantly on guard to keep us safe from microscopic threats from infections to cancer. Chief among this force is the macrophage, a white blood cell that surveils tissues and consumes pathogens, debris, dead cells, and cancer. Macrophages have a delicate task. It's crucial that they ignore healthy cells while on patrol, otherwise they could trigger an autoimmune response while performing their duties.
Published Largest protein yet discovered builds algal toxins



While seeking to unravel how marine algae create their chemically complex toxins, scientists have discovered the largest protein yet identified in biology. Uncovering the biological machinery the algae evolved to make its intricate toxin also revealed previously unknown strategies for assembling chemicals, which could unlock the development of new medicines and materials.
Published Machine learning approach helps researchers design better gene-delivery vehicles for gene therapy



Gene therapy could potentially cure genetic diseases but it remains a challenge to package and deliver new genes to specific cells safely and effectively. Existing methods of engineering one of the most commonly used gene-delivery vehicles, adeno-associated viruses (AAV), are often slow and inefficient. Now, researchers have developed a machine-learning approach that promises to speed up AAV engineering for gene therapy. The tool helps researchers engineer the protein shells of AAVs, called capsids, to have multiple desirable traits, such as the ability to deliver cargo to a specific organ but not others or to work in multiple species. Other methods only look for capsids that have one trait at a time.
Published Bacteria encode hidden genes outside their genome--do we?



A 'loopy' discovery in bacteria is raising fundamental questions about the makeup of our own genome -- and revealing a potential wellspring of material for new genetic therapies.
Published Researchers develop AI model that predicts the accuracy of protein--DNA binding



A new artificial intelligence model can predict how different proteins may bind to DNA.
Published Increasing solid-state electrolyte conductivity and stability using helical structure



Solid-state electrolytes have been explored for decades for use in energy storage systems and in the pursuit of solid-state batteries. These materials are safer alternatives to the traditional liquid electrolyte -- a solution that allows ions to move within the cell -- used in batteries today. However, new concepts are needed to push the performance of current solid polymer electrolytes to be viable for next generation materials.