Showing 20 articles starting at article 621
< Previous 20 articles Next 20 articles >
Categories: Biology: Genetics, Chemistry: Biochemistry
Published Light show in living cells



Observing proteins precisely within cells is extremely important for many branches of research but has been a significant technical challenge -- especially in living cells, as the required fluorescent labeling had to be individually attached to each protein. The research group has now overcome this hurdle: With a method called 'vpCells,' it is possible to label many proteins simultaneously, using five different fluorescent colors.
Published Octopus inspires new suction mechanism for robots



A new robotic suction cup which can grasp rough, curved and heavy stone, has been developed by scientists.
Published Marine microbial populations: Potential sensors of the global change in the ocean



Animal and plant populations have been extensively studied, which has helped to understand ecosystem processes and evolutionary adaptations. However, this has not been the case with microbial populations due to the impossibility of isolating, culturing and analyzing the genetic content of the different species and their individuals in the laboratory. Therefore, although it is known that populations of microorganisms include a great diversity, this remains largely uncharacterized.
Published RNA's hidden potential: New study unveils its role in early life and future bioengineering



The origin of life continues to remain a matter of debate. The ribonucleic acid (RNA) world hypothesis proposes that 'ribozymes' which store genetic information and possess catalytic functions may have supported the activities of early life forms. Now, researchers explore how RNA elongation is regulated allosterically, shedding light on its impact on early life processes and offering insights into the fabrication of arbitrary RNA nanostructures with various modern applications.
Published Calorie restriction study reveals complexities in how diet impacts aging



The rate at which human cells age is influenced by multiple interconnected factors. New research examined how restricting calories influences telomere length and biological aging.
Published Solving a mini mystery of cell division



Trying to hit a target size before dividing seems like the best strategy for maintaining a precise cell size, but bacteria don't do that. Now we know why.
Published Plant sensors could act as an early warning system for farmers



Using a pair of sensors made from carbon nanotubes, researchers discovered signals that help plants respond to stresses such as heat, light, or attack from insects or bacteria. Farmers could use these sensors to monitor threats to their crops, allowing them to intervene before the crops are lost.
Published From defects to order: Spontaneously emerging crystal arrangements in perovskite halides



A new hybrid layered perovskite featuring elusive spontaneous defect ordering has been found, report scientists. By introducing specific concentrations of thiocyanate ions into FAPbI3 (FA = formamidinium), they observed that ordered columnar defects appeared in the stacked crystalline layers, taking up one-third of the lattice space. These findings could pave the way to an innovative strategy for adjusting the properties of hybrid perovskites, leading to practical advances in optoelectronics and energy generation.
Published E-tongue can detect white wine spoilage before humans can



While the electronic tongue bears little physical resemblance to its namesake, the strand-like sensory probes of the 'e-tongue' still outperformed human senses when detecting contaminated wine in a recent study. In a recent experiment, the e-tongue identified signs of microorganisms in white wine within a week after contamination -- four weeks before a human panel noticed the change in aroma. This was also before those microbes could be grown from the wine in a petri-dish. Winemakers traditionally rely on these two methods, sniffing the wine and petri-dish testing, to identify potential wine 'faults' or spoilage.
Published Tracking a protein's fleeting shape changes



Researchers have developed a powerful, new technique to generate 'movies' of changing protein structures and speeds of up to 50 frames per second.
Published Two-dimensional nanomaterial sets record for expert-defying, counter-intuitive expansion



Engineers have developed a record-setting nanomaterial which when stretched in one direction, expands perpendicular to the applied force.
Published Making crops colorful for easier weeding



To make weeding easier, scientists suggest bioengineering crops to be colorful or to have differently shaped leaves so that they can be more easily distinguished from their wild and weedy counterparts. This could involve altering the crops' genomes so that they express pigments that are already produced by many plants, for example, anthocyanins, which make blueberries blue, or carotenoids, which make carrots orange. Then, they say, weeding robots could be trained to remove only the weeds using machine learning.
Published Researchers uncover human DNA repair by nuclear metamorphosis



Researchers have discovered a DNA repair mechanism that advances understanding of how human cells stay healthy, and which could lead to new treatments for cancer and premature aging.
Published New butterfly species created 200,000 years ago by two species interbreeding



Researchers have shown that an Amazonian butterfly is a hybrid species, formed by two other species breeding together almost 200,000 years ago. Researchers have shown that an Amazonian butterfly is a hybrid species, formed by two other species breeding together almost 200,000 years ago.
Published 'Nanostitches' enable lighter and tougher composite materials



In an approach they call 'nanostitching,' engineers used carbon nanotubes to prevent cracking in multilayered composites. The advance could lead to next-generation airplanes and spacecraft.
Published New tagging method provides bioadhesive interface for marine sensors on diverse, soft, and fragile species



Tagging marine animals with sensors to track their movements and ocean conditions can provide important environmental and behavioral information. Existing techniques to attach sensors currently largely rely on invasive physical anchors, suction cups, and rigid glues. While these techniques can be effective for tracking marine animals with hard exoskeletons and large animals such as sharks, individuals can incur physiological and metabolic stress during the tagging process, which can affect the quality of data collection. A newly developed soft hydrogel-based bioadhesive interface for marine sensors, referred to as BIMS, holds promise as an effective, rapid, robust, and non-invasive method to tag and track all sorts of marine species, including soft and fragile species. The BIMS tagging, which is also simple and versatile, can help researchers better understand animal behavior while also capturing oceanographic data critical for helping to better understand some impacts of climate change and for resource management.
Published Cooler transformers could help electric grid



Simulations on the Stampede2 supercomputer of the Texas Advanced Computing Center (TACC) are helping scientists engineer solutions to overheating of grid transformers -- a critical component of the electric grid.
Published Physicists explain--and eliminate--unknown force dragging against water droplets on superhydrophobic surfaces



Researchers adapt a novel force measurement technique to uncover the previously unidentified physics at play at the thin air-film gap between water droplets and superhydrophobic surfaces.
Published Twisted pollen tubes induce infertility



Plants with multiple sets of chromosomes, known as polyploids, are salt-tolerant or drought-resistant and often achieve higher yields. However, newly formed polyploid plants are often sterile or have reduced fertility and are unsuitable for breeding resistant lines. The reason is that the pollen tube in these plants grows incorrectly, which keeps fertilization from taking place. Pollen tube growth is mainly controlled by two genes that could be useful in crop breeding.
Published Next-generation treatments hitch a ride into cancer cells



Researchers found that a new activator called L687 induces cancer cells to accept delivery of antisense oligonucleotide (ASO) drugs. These drugs can treat cancer by blocking the transfer of messages from genes that encourage cancer growth. Previous methods to deliver ASOs into cells had only limited success. This research will help accelerate the development and delivery of novel ASO cancer therapies.