Showing 20 articles starting at article 201

< Previous 20 articles        Next 20 articles >

Categories: Biology: Evolutionary, Chemistry: Organic Chemistry

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Ecology: Animals Ecology: Endangered Species Ecology: Extinction
Published

Genes provide hope for the survival of Arabia's last big cat      (via sciencedaily.com)     Original source 

The release of captive bred animals carefully selected for their genes can make a significant contribution to the successful recovery of the dwindling wild population and avert the prospect of extinction. Despite revealing extremely low levels of genetic diversity in the wild leopard population in Oman, the research team discovered higher levels of genetic diversity in captive leopards across the region. This important genetic resource has the potential for a major role in successful recovery of the Arabian leopard.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

By listening, scientists learn how a protein folds      (via sciencedaily.com)     Original source 

By converting their data into sounds, scientists discovered how hydrogen bonds contribute to the lightning-fast gyrations that transform a string of amino acids into a functional, folded protein. Their report offers an unprecedented view of the sequence of hydrogen-bonding events that occur when a protein morphs from an unfolded to a folded state.

Chemistry: Biochemistry Chemistry: Organic Chemistry Computer Science: General Engineering: Nanotechnology
Published

Blueprints of self-assembly      (via sciencedaily.com)     Original source 

Scientists have taken a step closer to replicating nature's processes of self-assembly. The study describes the synthetic construction of a tiny, self-assembled crystal known as a 'pyrochlore,' which bears unique optical properties. The advance provides a steppingstone to the eventual construction of sophisticated, self-assembling devices at the nanoscale -- roughly the size of a single virus.

Anthropology: Cultures Biology: Biochemistry Biology: Biotechnology Biology: Evolutionary Biology: General Biology: Microbiology Biology: Zoology Ecology: Endangered Species Ecology: Extinction Ecology: Invasive Species Geoscience: Geography Paleontology: Fossils Paleontology: General
Published

Evolutionary history of extinct duck revealed      (via sciencedaily.com)     Original source 

The study's findings show mergansers arrived in the New Zealand region at least seven million years ago from the Northern Hemisphere, in a separate colonisation event to that which led to the Brazilian merganser.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Seeking stronger steel, systematic look at 120 combinations of alloy elements provides clues      (via sciencedaily.com)     Original source 

Investigating ways to create high-performance steel, a research team used theoretical calculations on 120 combinations of 12 alloy elements, such as aluminum and titanium, with carbon and nitrogen, while also systematically clarifying the bonding mechanism.

Anthropology: General Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Paleontology: Early Mammals and Birds Paleontology: Fossils Paleontology: General
Published

Diverse headgear in hoofed mammals evolved from common ancestor      (via sciencedaily.com)     Original source 

From the small ossicones on a giraffe to the gigantic antlers of a male moose -- which can grow as wide as a car -- the headgear of ruminant hooved mammals is extremely diverse, and new research suggests that despite the physical differences, fundamental aspects of these bony adaptations likely evolved from a common ancestor.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species Ecology: Nature Environmental: General
Published

Modern plant enzyme partners with surprisingly ancient protein      (via sciencedaily.com)     Original source 

Scientists have discovered that a protein responsible for the synthesis of a key plant material evolved much earlier than suspected. This new research explored the origin and evolution of the biochemical machinery that builds lignin, a structural component of plant cell walls with significant impacts on the clean energy industry.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics
Published

Diamond glitter: A play of colors with artificial DNA crystals      (via sciencedaily.com)     Original source 

Using DNA origami, researchers have built a diamond lattice with a periodicity of hundreds of nanometers -- a new approach for manufacturing semiconductors for visible light.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Environmental: General
Published

A new 'rule of biology' may have come to light, expanding insight into evolution and aging      (via sciencedaily.com)     Original source 

A molecular biologist may have found a new 'rule of biology.' The rule challenges long-held notions that most living organisms prefer stability over instability because stability requires less energy and fewer resources.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Breaking bonds to form bonds: Rethinking the Chemistry of Cations      (via sciencedaily.com)     Original source 

A team of chemists has achieved a significant breakthrough in the field of chemical synthesis, developing a novel method for manipulating carbon-hydrogen bonds. This groundbreaking discovery provides new insights into the molecular interactions of positively charged carbon atoms. By selectively targeting a specific C--H bond, they open doors to synthetic pathways that were previously closed -- with potential applications in medicine.

Biology: Evolutionary Biology: General Ecology: Endangered Species Ecology: Extinction Ecology: Nature Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Fossils Paleontology: General
Published

How did sabre-toothed tigers acquire their long upper canine teeth?      (via sciencedaily.com)     Original source 

In a groundbreaking study an international team of scientists has investigated the evolutionary patterns behind the development of sabre teeth, with some unexpected results along the way.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Ecology: Endangered Species
Published

Bioengineered enzyme creates natural vanillin from plants in one step      (via sciencedaily.com)     Original source 

Vanilla, the most widely used flavoring compound in confectionaries and cosmetics, gets its sweet flavor and aroma from the chemical compound -- 'vanillin'. However, the large-scale production of natural vanillin is impeded by the lack of microbial processes and enzymes which can commercially generate vanillin. Now, researchers have genetically engineered a novel enzyme which can convert ferulic acid from plant waste into vanillin in a one-step sustainable process.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

A novel multifunctional catalyst turns methane into valuable hydrocarbons      (via sciencedaily.com)     Original source 

The optimal design of a novel zeolite catalyst enables tandem reaction that turns greenhouse gases into value-added chemicals, report scientists. By tuning the separation between different active sites on the catalyst, they achieved the stepwise conversion of methane into methanol and then to hydrocarbons at mild conditions. These findings will help reduce energy costs and greenhouse gas emissions across various industrial fields.

Anthropology: General Biology: Botany Biology: Evolutionary Biology: General Ecology: Animals Offbeat: Earth and Climate Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals
Published

Iconic baobabs: The origin and long-distance travels of upside down trees      (via sciencedaily.com)     Original source 

The research cracks the code on the iconic baobab tree's origin story, revealing their surprising origins in Madagascar and incredible long-distance dispersals to Africa and Australia. The study unveils how baobabs developed unique pollination mechanisms -- some attracting hawkmoths, others lemurs, and even bats -- showcasing remarkable evolutionary adaptations. The research sheds light on how climate change has shaped the baobab's distribution and diversification over millions of years, offering valuable insights for understanding plant responses to future environmental shifts.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Molecular Biology: Zoology Offbeat: General Offbeat: Plants and Animals
Published

Some mice may owe their monogamy to a newly evolved type of cell      (via sciencedaily.com)     Original source 

What makes the oldfield mouse steadfastly monogamous throughout its life while its closest rodent relatives are promiscuous? The answer may be a previously unknown hormone-generating cell. Scientists discover the cells and hormones that inspire mice to nurture their young; the same hormones are also present in humans.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Next-generation sustainable electronics are doped with air      (via sciencedaily.com)     Original source 

Semiconductors are the foundation of all modern electronics. Now, researchers have developed a new method where organic semiconductors can become more conductive with the help of air as a dopant. The study is a significant step towards future cheap and sustainable organic semiconductors.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Geoscience: Geochemistry
Published

Promising new development in solar cell technology      (via sciencedaily.com)     Original source 

Researchers who contributed to the development of record-breaking solar cells a few years ago, expanded their invention. The self-assembled monolayers can now be applied not only in inverted but also in regular structure perovskite solar cells.

Chemistry: General Chemistry: Organic Chemistry Energy: Batteries
Published

Eco-friendly and affordable battery for low-income countries      (via sciencedaily.com)     Original source 

A battery made from zinc and lignin that can be used over 8000 times. This has been developed with a vision to provide a cheap and sustainable battery solution for countries where access to electricity is limited.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Geoscience: Geochemistry
Published

How to make ubiquitous plastics biodegradable      (via sciencedaily.com)     Original source 

Polystyrene is made from styrene building blocks and is the most widely used plastic in terms of volume, for example in packaging. Unlike PET, which can now be produced and recycled using biotechnological methods, the production of polystyrene has so far been a purely chemical process. The plastic can't be broken down by biotechnological means, either. Researchers are looking for ways to rectify this: An international team decoded a bacterial enzyme that plays a key role in styrene degradation. This paves the way for biotechnological application.