Showing 20 articles starting at article 621
< Previous 20 articles Next 20 articles >
Categories: Biology: Evolutionary, Chemistry: Organic Chemistry
Published Survival of the newest: the mammals that survive mass extinctions aren't as 'boring' as scientists thought



For decades, scientists have assumed that mammals and their relatives that survived challenging times (like those during mass extinctions) made it because they were generalists that were able to eat just about anything and adapt to whatever life threw at them. A new study into the mammal family tree through multiple mass extinctions revealed that the species that survived aren't as generic as scientists had thought: instead, having new and different traits can be the key to succeeding in the aftermath of a catastrophe.
Published Ruffed grouse population more resilient than expected, genetic study finds



Despite decades of decline, a genetic analysis of ruffed grouse reveals that Pennsylvania's state bird harbors more genetic diversity and connectivity than expected. The findings suggest that the iconic game bird could be maintained in persistent numbers if appropriate protections are implemented.
Published New 'Assembly Theory' unifies physics and biology to explain evolution and complexity



An international team of researchers has developed a new theoretical framework that bridges physics and biology to provide a unified approach for understanding how complexity and evolution emerge in nature. This new work on 'Assembly Theory' represents a major advance in our fundamental comprehension of biological evolution and how it is governed by the physical laws of the universe.
Published These robots helped explain how insects evolved two distinct strategies for flight



Robots helped achieve a major breakthrough in our understanding of how insect flight evolved. The study is a result of a six-year long collaboration between roboticists and biophysicists.
Published Graphene oxide reduces the toxicity of Alzheimer's proteins



A probable early driver of Alzheimer's disease is the accumulation of molecules called amyloid peptides. These cause cell death, and are commonly found in the brains of Alzheimer’s patients. Researchers have now shown that yeast cells that accumulate these misfolded amyloid peptides can recover after being treated with graphene oxide nanoflakes.
Published Bioengineering breakthrough increases DNA detection sensitivity by 100 times



Researchers have pushed forward the boundaries of biomedical engineering one hundredfold with a new method for DNA detection with unprecedented sensitivity.
Published Scientists identify evolutionary gateway helping pneumonia bacteria become resistant to antibiotics



An evolutionary gateway which helps pneumonia cells become resistant to antibiotics has been discovered.
Published Genetics of attraction: Mate choice in fruit flies



Genetic quality or genetic compatibility? What do female fruit flies prioritize when mating? Researchers show that both factors are important at different stages of the reproductive process and that females use targeted strategies to optimize the fitness of their offspring.
Published Small but mighty new gene editor



A new CRISPR-based gene-editing tool has been developed which could lead to better treatments for patients with genetic disorders. The tool is an enzyme, AsCas12f, which has been modified to offer the same effectiveness but at one-third the size of the Cas9 enzyme commonly used for gene editing. The compact size means that more of it can be packed into carrier viruses and delivered into living cells, making it more efficient.
Published Genome study reveals 30 years of Darwin's finch evolution



An international team of researchers has released a landmark study on contemporary evolutionary change in natural populations. Their study uses one of the largest genomic datasets ever produced for animals in their natural environment, comprising nearly 4,000 Darwin's finches. The study has revealed the genetic basis of adaptation in this iconic group.
Published Insights into early snake evolution through brain analysis



Recent study sheds new light on the enigmatic early evolution of snakes by examining an unexpected source: their brains. The results emphasize the significance of studying both the soft parts of animals’ bodies and their bones for understanding how animals evolved.
Published Explosion in fish biodiversity due to genetic recycling



The rapid formation of 500 different species of fish in a single lake, each with specialized ecological roles, resulted from a small but genetically diverse hybrid population.
Published Timing plant evolution with a fast-ticking epigenetic clock



Recent discoveries in the field of epigenetics, the study of inheritance of traits that occur without changing the DNA sequence, have shown that chronological age in mammals correlates with epigenetic changes that accumulate during the lifetime of an individual. In humans, this observation has led to the development of epigenetic clocks, which are now extensively used as biomarkers of aging. While these clocks work accurately from birth until death, they are set back to zero in each new generation. Now, an international team shows that epigenetic clocks not only exist in plants, but that these clocks keep ticking accurately over many generations.
Published A deep look into the progression of Parkinson's Disease



Scientists have used cutting-edge imaging techniques to shed light on the progression of Parkinson's disease by studying how the main culprit, the protein alpha-synuclein, disrupts cellular metabolism.
Published Did animal evolution begin with a predatory lifestyle?



Surprising findings on the development of sea anemones suggest that a predatory lifestyle molded their evolution and had a significant impact on the origin of their nervous system. The researchers were able to show that the young life stages (larvae) of the small sea anemone Aiptasia actively feed on living prey and are not dependent on algae. To capture its prey, the anemone larvae use specialized stinging cells and a simple neuronal network.
Published An advance in cryo-EM could be a significant boon for research on potential cancer therapies



A technology called cryo-electron microscopy enables scientists to see the atomic structure of biological molecules in high resolution. But to date, it has been ineffective for imaging small molecules. A team of biochemists devised a solution that makes it possible to hold small protein molecules in place while they're being imaged, which will enable cryo-EM to produce much clearer images of such molecules. The advance is significant because small and medium-sized protein molecules are an area of focus in research on potential new drugs for cancer and other diseases.
Published Toxic formaldehyde's dual nature to be probed with new chemical tool



Newly developed ompounds aim to reveal the dual nature of formaldehyde, a chemical that is known to cause cancer but is also believed to play important roles in our biology.
Published A turtle time capsule: DNA found in ancient shell



Paleontologists discover possible DNA remains in fossil turtle that lived 6 million years ago in Panama, where continents collide.
Published Tiny CRISPR tool could help shred viruses



Scientists mapped out the three-dimensional structure of one of the smallest known CRISPR-Cas13 systems then used that knowledge to modify its structure and improve its accuracy.
Published Strength is in this glass's DNA



Scientists were able to fabricate a pure form of glass and coat specialized pieces of DNA with it to create a material that was not only stronger than steel, but incredibly lightweight.