Showing 20 articles starting at article 281
< Previous 20 articles Next 20 articles >
Categories: Biology: Evolutionary, Energy: Nuclear
Published How does one species become many?



A global team of biologists has compiled nearly two decades of field data -- representing the study of more than 3,400 Darwin's finches in the Galapagos Islands -- to identify the relationship between beak traits and the longevity of individual finches from four different species.
Published Why animals shrink over time explained with new evolution theory



The new theoretical research proposes that animal size over time depends on two key ecological factors.
Published A non-proliferation solution: Using antineutrinos to surveil nuclear reactors



Antineutrinos generated in nuclear fission can be measured to remotely monitor the operation of nuclear reactors and verify that they are not being used to produce nuclear weapons, report scientists. Thanks to a newly developed method, it is now possible to estimate a reactor's operation status, fuel burnup, and fuel composition based entirely on its antineutrino emissions. This technique could contribute massively to nuclear non-proliferation efforts and, in turn, safer nuclear energy.
Published Pacific kelp forests are far older that we thought



Fossils of kelp along the Pacific Coast are rare. Until now, the oldest fossil dated from 14 million years ago, leading to the view that today's denizens of the kelp forest -- marine mammals, urchins, sea birds -- coevolved with kelp. A recent amateur discovery pushes back the origin of kelp to 32 million years ago, long before these creatures appeared. A new analysis suggests the first kelp grazers were extinct, hippo-like animals called desmostylians.
Published Feeding mode of ancient vertebrate tested for first time



A feeding method of the extinct jawless heterostracans, among the oldest of vertebrates, has been examined and dismissed by scientists, using fresh techniques.
Published Solid-state qubits: Forget about being clean, embrace mess



New findings debunk previous wisdom that solid-state qubits need to be super dilute in an ultra-clean material to achieve long lifetimes. Instead, cram lots of rare-earth ions into a crystal and some will form pairs that act as highly coherent qubits, a new paper shows.
Published Candida evolution disclosed: New insights into fungal infections



Identification of genes under recent selection provides insights into the molecular mechanisms of human-related adaptation in Candida pathogens. The study reveals both known and novel genetic variants associated with drug resistance, offering potential targets for improved antifungal therapies.
Published Researchers create light-powered yeast, providing insights into evolution, biofuels, cellular aging



Researchers have engineered one of the world's first yeast cells able to harness energy from light, expanding our understanding of the evolution of this trait -- and paving the way for advancements in biofuel production and cellular aging.
Published Even the oldest eukaryote fossils show dazzling diversity and complexity



The sun has just set on a quiet mudflat in Australia's Northern Territory; it'll set again in another 19 hours. A young moon looms large over the desolate landscape. No animals scurry in the waning light. No leaves rustle in the breeze. No lichens encrust the exposed rock. The only hint of life is some scum in a few puddles and ponds. And among it lives a diverse microbial community of our ancient ancestors.
Published Oldest known fossilized skin is 21 million years older than previous examples



Researchers have identified a 3D fragment of fossilized skin that is at least 21 million years than previously described skin fossils. The skin, which belonged to an early species of Paleozoic reptile, has a pebbled surface and most closely resembles crocodile skin. It's the oldest example of preserved epidermis, the outermost layer of skin in terrestrial reptiles, birds, and mammals, which was an important evolutionary adaptation in the transition to life on land.
Published New research sheds light on an old fossil solving an evolutionary mystery



Picrodontids -- an extinct family of placental mammals that lived several million years after the extinction of the dinosaurs -- are not primates as previously believed.
Published Study on lamprey embryos sheds light on the evolutionary origin of vertebrate head



Scientists have investigated lamprey embryos using cutting-edge microscopic techniques to reveal interesting insights about vertebrate head evolution, clarifying an unresolved mystery in basic science.
Published Largest diversity study of 'magic mushrooms' investigates the evolution of psychoactive psilocybin production



The genomic analysis of 52 Psilocybe specimens includes 39 species that have never been sequenced. Psilocybe arose much earlier than previously thought -- about 65 million years ago -- and the authors found that psilocybin was first synthesized in mushrooms in the genus Psilocybe. Their analysis revealed two distinct gene orders within the gene cluster that produces psilocybin. The two gene patterns correspond to an ancient split in the genus, suggesting two independent acquisitions of psilocybin in its evolutionary history. The study is the first to reveal such a strong evolutionary pattern within the gene sequences underpinning the psychoactive proteins synthesis.
Published How did the bushpig cross the strait? A great puzzle in African mammal biogeography solved by genomics



Africa has a huge diversity of large mammals, but their evolutionary relationships and movement across the continent over time often remain a mystery. A new scientific study sheds light on longstanding questions about the interplay between evolution and geography in one of these mammals, namely the iconic African bushpig, and helps settle a major question regarding prehistoric human activities shaping biodiversity patterns in Africa.
Published Evolution is not as random as previously thought



A groundbreaking study has found that evolution is not as unpredictable as previously thought, which could allow scientists to explore which genes could be useful to tackle real-world issues such as antibiotic resistance, disease and climate change. The study challenges the long-standing belief about the unpredictability of evolution, and has found that the evolutionary trajectory of a genome may be influenced by its evolutionary history, rather than determined by numerous factors and historical accidents.
Published The evolution of photosynthesis better documented thanks to the discovery of the oldest thylakoids in fossil cyanobacteria



Researchers have identified microstructures in fossil cells that are 1.75 billion years old. These structures, called thylakoid membranes, are the oldest ever discovered. They push back the fossil record of thylakoids by 1.2 billion years and provide new information on the evolution of cyanobacteria which played a crucial role in the accumulation of oxygen on the early Earth.
Published The snail or the egg?



Animals reproduce in one of two distinct ways: egg-laying or live birth. By studying an evolutionarily recent transition from egg-laying to live-bearing in a marine snail, collaborative research has shed new light on the genetic changes that allow organisms to make the switch.
Published Nematode proteins shed light on infertility



Biologists developed a method for illuminating the intricate interactions of the synaptonemal complex in the nematode C. elegans. The authors identified a trio of protein segments that guide chromosomal interactions, and pinpointed the location where they interact with each other. Their novel method uses a technique known as genetic suppressor screening, which can serve as a blueprint for research on large cellular assemblies that resist traditional structural analysis.
Published Early primates likely lived in pairs



Primate social organization is more flexible than previously assumed. According to a new study, the first primates probably lived in pairs, while only around 15 percent of individuals were solitary.
Published How jellyfish regenerate functional tentacles in days



At about the size of a pinkie nail, the jellyfish species Cladonema can regenerate an amputated tentacle in two to three days -- but how? Regenerating functional tissue across species, including salamanders and insects, relies on the ability to form a blastema, a clump of undifferentiated cells that can repair damage and grow into the missing appendage. Jellyfish, along with other cnidarians such as corals and sea anemones, exhibit high regeneration abilities, but how they form the critical blastema has remained a mystery until now.