Showing 20 articles starting at article 221
< Previous 20 articles Next 20 articles >
Categories: Biology: Evolutionary, Engineering: Nanotechnology
Published Unlocking the genetic mysteries behind plant adaptation: New insights into the evolution of a water-saving trait in the pineapple family (bromeliaceae)



Researchers have achieved a breakthrough in understanding how genetic drivers influence the evolution of a specific photosynthesis mechanism in Tillandsia (air plants). This sheds light on the complex actions that cause plant adaptation and ecological diversity.
Published Speeding up spectroscopic analysis



Ultrafast laser spectroscopy allows the ascertainment of dynamics over extremely short time scales, making it a very useful tool in many scientific and industrial applications. A major disadvantage is the considerable measuring time this technique usually requires, which often leads to lengthy acquisition times spanning minutes to hours. Researchers have now developed a technique to speed up spectroscopic analysis.
Published Imaging technique shows new details of peptide structures



Researchers outline how they used a chemical probe to light up interlocking peptides. Their technique will help scientists differentiate synthetic peptides from toxic types found in Alzheimer's disease.
Published Surprising evolutionary pattern in yeast study



Research study reports intriguing findings made through innovative artificial intelligence analysis about yeasts -- small fungi that are key contributors to biotechnology, food production, and human health. These findings on simple yeast organisms not only challenge widely accepted ideas about yeast evolution, but also provides access to an incredibly rich yeast analysis dataset that could have major implications for future evolutionary biology and bioinformatics research for years to come.
Published AI deciphers new gene regulatory code in plants and makes accurate predictions for newly sequenced genomes



Elucidating the relationship between the sequences of non-coding regulatory elements and their target genes is key to understanding gene regulation and its variation between plant species and ecotypes. Now, an international research team developed deep learning models that link gene sequence data with mRNA copy number for several plant species and predicted the regulatory effect of gene sequence variation.
Published These jacks-of-all-trades are masters, too: Yeast study helps answer age-old biology question



The results suggest that internal -- not external -- factors are the primary drivers of variation in the types of carbon yeasts can eat, and the researchers found no evidence that metabolic versatility, or the ability to eat different foods, comes with any trade-offs. In other words, some yeasts are jacks-of-all-trades and masters of each.
Published Curiosity promotes biodiversity



Cichlid fishes exhibit differing degrees of curiosity. The cause for this lies in their genes, as reported by researchers. This trait influences the cichlids' ability to adapt to new habitats.
Published Nanomaterial that mimics proteins could be basis for new neurodegenerative disease treatments



A newly developed nanomaterial that mimics the behavior of proteins could be an effective tool for treating Alzheimer's and other neurodegenerative diseases. The nanomaterial alters the interaction between two key proteins in brain cells -- with a potentially powerful therapeutic effect.
Published Diamond dust shines bright in Magnetic Resonance Imaging



An unexpected discovery surprised a scientist: nanometer-sized diamond particles, which were intended for a completely different purpose, shone brightly in a magnetic resonance imaging experiment -- much brighter than the actual contrast agent, the heavy metal gadolinium. Could diamond dust -- in addition to its use in drug delivery to treat tumor cells -- one day become a novel contrast agent used for MRI?
Published 'Like a nanoscopic Moon lander': Scientists unlock secret of how pyramidal molecules move across surfaces



Scientists have watched a molecule move across a graphite surface in unprecedented detail. It turns out this particular molecule moves like a Moon lander -- and the insights hold potential for future nanotechnologies.
Published Color variants in cuckoos: The advantages of rareness



Every cuckoo is an adopted child -- raised by foster parents, into whose nest the cuckoo mother smuggled her egg. The cuckoo mother is aided in this subterfuge by her resemblance to a bird of prey. There are two variants of female cuckoos: a gray morph that looks like a sparrowhawk, and a rufous morph. Male cuckoos are always gray.
Published Pattern formation in the nano-cosmos



A new model extends the theory of elastic phase separation towards nanoscopic structures. Such patterns are frequent in biological systems and also used in nano-engineering to create structural color. With their new insights, the scientists can predict the length scale of nanoscopic patterns and thus control them during production.
Published How parasites shape complex food webs



A new study sheds light on how parasites, often overlooked, can dramatically affect the balance between predator and prey populations. Researchers developed a groundbreaking mathematical framework that predicts when predators, prey, and parasites can coexist, considering factors like random fluctuations and parasite effects on both populations. This research provides a valuable tool for conservation by helping predict how parasites influence ecosystem resilience and informing strategies to protect vulnerable species.
Published Scientists unveil genetics behind development of gliding



Researchers explain the genomic and developmental basis of the patagium, the thin skin membrane that allows some mammalian species to soar through the air.
Published Bioluminescence first evolved in animals at least 540 million years ago



Bioluminescence first evolved in animals at least 540 million years ago in a group of marine invertebrates called octocorals, according to the results of a new study. The study focuses on an ancient group of marine invertebrates that includes soft corals, pushes back the previous oldest dated example of trait by nearly 300 million years.
Published Laser-treated cork absorbs oil for carbon-neutral ocean cleanup



Researchers use laser treatments to transform ordinary cork into a powerful tool for treating oil spills. They tested variations of a fast-pulsing laser treatment, closely examining the nanoscopic structural changes and measuring the ratio of oxygen and carbon in the material, changes in the angles with which water and oil contact the surface, and the material's light wave absorption, reflection, and emission across the spectrum to determine its durability after multiple cycles of warming and cooling. The laser treatments not only help to better absorb oil, but also work to keep water out.
Published Magnetic with a pinch of hydrogen



Magnetic two-dimensional materials consisting of one or a few atomic layers have only recently become known and promise interesting applications, for example for the electronics of the future. So far, however, it has not been possible to control the magnetic states of these materials well enough. A research team is now presenting an innovative idea that could overcome this shortcoming -- by allowing the 2D layer to react with hydrogen.
Published Energy scientists unravel the mystery of gold's glow



EPFL researchers have developed the first comprehensive model of the quantum-mechanical effects behind photoluminescence in thin gold films; a discovery that could drive the development of solar fuels and batteries.
Published Marine microbial populations: Potential sensors of the global change in the ocean



Animal and plant populations have been extensively studied, which has helped to understand ecosystem processes and evolutionary adaptations. However, this has not been the case with microbial populations due to the impossibility of isolating, culturing and analyzing the genetic content of the different species and their individuals in the laboratory. Therefore, although it is known that populations of microorganisms include a great diversity, this remains largely uncharacterized.
Published RNA's hidden potential: New study unveils its role in early life and future bioengineering



The origin of life continues to remain a matter of debate. The ribonucleic acid (RNA) world hypothesis proposes that 'ribozymes' which store genetic information and possess catalytic functions may have supported the activities of early life forms. Now, researchers explore how RNA elongation is regulated allosterically, shedding light on its impact on early life processes and offering insights into the fabrication of arbitrary RNA nanostructures with various modern applications.