Showing 20 articles starting at article 541

< Previous 20 articles        Next 20 articles >

Categories: Biology: Evolutionary, Engineering: Nanotechnology

Return to the site home page

Chemistry: Biochemistry Engineering: Graphene Engineering: Nanotechnology
Published

Researchers discover new ultra strong material for microchip sensors      (via sciencedaily.com)     Original source 

Researchers have unveiled a remarkable new material with potential to impact the world of material science: amorphous silicon carbide (a-SiC). Beyond its exceptional strength, this material demonstrates mechanical properties crucial for vibration isolation on a microchip. Amorphous silicon carbide is therefore particularly suitable for making ultra-sensitive microchip sensors.

Biology: Biotechnology Biology: Cell Biology Chemistry: Biochemistry Engineering: Nanotechnology Offbeat: General Offbeat: Plants and Animals
Published

Researchers engineer colloidal quasicrystals using DNA-modified building blocks      (via sciencedaily.com)     Original source 

A new study unveils a novel methodology to engineer colloidal quasicrystals using DNA-modified building blocks. The implications of this breakthrough are far-reaching, offering a potential blueprint for the controlled synthesis of other complex structures previously considered beyond reach.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Marine Biology: Microbiology Biology: Zoology Ecology: Sea Life Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals
Published

Where is a sea star's head? Maybe just about everywhere      (via sciencedaily.com)     Original source 

A new study that combines genetic and molecular techniques helps solve the riddle of sea star (commonly called starfish) body plans, and how sea stars start life with bilateral body symmetry -- just like humans -- but grow up to be adults with fivefold 'pentaradial' symmetry.

Biology: Biochemistry Biology: Evolutionary Biology: General Biology: Zoology Paleontology: Fossils Paleontology: General
Published

How the fish got its shoulder      (via sciencedaily.com)     Original source 

A new analysis of the bones and muscles in ancient fish gives new clues about how the shoulder evolved in animals -- including us.

Chemistry: Biochemistry Chemistry: Thermodynamics Computer Science: General Engineering: Nanotechnology Physics: Optics
Published

New twist on optical tweezers      (via sciencedaily.com)     Original source 

Optical tweezers use laser light to manipulate small particles. A new method has been advanced using Stampede2 supercomputer simulations that makes optical tweezers safer to use for potential biological applications, such as cancer therapy. 

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

New Nijmegen method reveals hidden genetic variations      (via sciencedaily.com)     Original source 

Many hidden genetic variations can be detected with Chameleolyser, a new method. The information is already yielding new patient diagnoses and may also lead to the discovery of as yet unknown disease genes.

Chemistry: Biochemistry Chemistry: General Engineering: Nanotechnology Physics: Optics
Published

Photography: One-stop solution for shaping and outlining objects      (via sciencedaily.com)     Original source 

A joint research team has developed a dual metalens that can switch between shooting modes based on light conditions.

Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

'Plug and play' nanoparticles could make it easier to tackle various biological targets      (via sciencedaily.com)     Original source 

Engineers have developed modular nanoparticles that can be easily customized to target different biological entities such as tumors, viruses or toxins. The surface of the nanoparticles is engineered to host any biological molecules of choice, making it possible to tailor the nanoparticles for a wide array of applications, ranging from targeted drug delivery to neutralizing biological agents.

Biology: Biochemistry Biology: Evolutionary Biology: Zoology Ecology: Animals
Published

Evolutionary chance made this bat a specialist hunter      (via sciencedaily.com)     Original source 

It is generally believed that, for millions of years, bats and the insects they hunt at night have adapted to each other in an evolutionary arms race to become better at finding or avoiding each other. Now, a new study shows that this may not be the case at all.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Paleontology: Fossils Paleontology: General
Published

Genetic methods enable the use of fossil lipids as biomarkers for oxygen-producing primordial bacteria      (via sciencedaily.com)     Original source 

Cyanobacteria are a key species in Earth's history, as they introduced atmospheric oxygen for the first time. The analysis of their evolution therefore provides important insights into the formation of modern aerobic ecosystems. For a long time, a certain type of fossil lipid, so-called 2-methylhopanes, was considered to be an important biomarker for Cyanobacteria in sediments, some of which are hundreds of millions of years old. However, this came into doubt when it turned out that not only Cyanobacteria but also Alphaproteobacteria are genetically capable of producing these lipids.

Biology: Biochemistry Biology: Evolutionary Biology: General Ecology: Animals
Published

Fruit, nectar, bugs and blood: How bat teeth and jaws evolved for a diverse dinnertime      (via sciencedaily.com)     Original source 

Noctilionoid bat species evolved wildly different faces as they adapted to exploit diverse food sources -- including insects, fruit, nectar, blood and fish. New research shows that those adaptations include dramatic, but also consistent, modifications to tooth number, size, shape and position.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Microbiology Ecology: Sea Life Environmental: Ecosystems
Published

Discovery of three novel minorisa species, the smallest predatory marine picoplankton      (via sciencedaily.com)     Original source 

Researchers have made a significant discovery by identifying and characterizing three novel species within the Minorisa genus of marine picoplankton. Before this study, only one species of Minorisa was recognized. This finding reveals previously unseen diversity of Minorisa, thereby enhancing species identification and our understanding of its ecological functions in marine ecosystems.  

Biology: Biochemistry Biology: Evolutionary Biology: General Biology: Microbiology Environmental: Ecosystems Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Analysis finds diversity on the smallest scales in sulfur-cycling salt marsh microbes      (via sciencedaily.com)     Original source 

Scientists have discovered that even among the sulfur-cycling microbes that are responsible for the 'rotten egg gas' smell in salt marsh air, diversity extends all the way to genomes and even to individual nucleotides.

Chemistry: Biochemistry Chemistry: Organic Chemistry Energy: Technology Engineering: Nanotechnology
Published

DNA Origami nanoturbine sets new horizon for nanomotors      (via sciencedaily.com)     Original source 

Researchers introduce a pioneering breakthrough in the world of nanomotors -- the DNA origami nanoturbine. This nanoscale device could represent a paradigm shift, harnessing power from ion gradients or electrical potential across a solid-state nanopore to drive the turbine into mechanical rotations. The core of this pioneering discovery is the design, construction, and driven motion of a 'DNA origami' turbine, which features three chiral blades, all within a minuscule 25-nanometer frame, operating in a solid-state nanopore. By ingeniously designing two chiral turbines, researchers now have the capability to dictate the direction of rotation, clockwise or anticlockwise.

Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Using sound to test devices, control qubits      (via sciencedaily.com)     Original source 

Researchers have developed a system that uses atomic vacancies in silicon carbide to measure the stability and quality of acoustic resonators. What's more, these vacancies could also be used for acoustically-controlled quantum information processing, providing a new way to manipulate quantum states embedded in this commonly-used material. 

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

Achieving large and uniform particle sizes      (via sciencedaily.com)     Original source 

Dispersions of polymer particles in a liquid phase (latexes) have many important applications in coatings technology, medical imaging, and cell biology. A team of researchers has now developed a method to produce stable polystyrene dispersions with unprecedentedly large, and uniform, particle sizes. Narrow size distributions are essential in many advanced technologies, but were previously difficult to produce photochemically.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Zoology Ecology: Animals Offbeat: General Offbeat: Plants and Animals
Published

Finding the genes that help kingfishers dive without hurting their brains      (via sciencedaily.com)     Original source 

Scientists studied the genomes of 30 kingfisher species to try to identify the genes that allow kingfishers to dive headfirst into water without huring their brains. The researchers found that the diving birds have unusual mutations to the genes that produce tau: a protein that helps stabilize tiny structures in the brain, but which can build up in humans with traumatic brain injuries or Alzheimer's disease. The researchers suspect that these variations in the kingfishers' tau proteins might protect their brains when they dive.

Biology: Biochemistry Biology: Evolutionary Biology: General Biology: Microbiology
Published

How to slow the spread of deadly 'superbugs'      (via sciencedaily.com)     Original source 

Harnessing new advances in genomic surveillance technology could help detect the rise of deadly 'superbugs'.

Chemistry: Biochemistry Engineering: Nanotechnology Physics: General Physics: Quantum Physics
Published

Unexpected behavior discovered in active particles      (via sciencedaily.com)     Original source 

Physicists have now shown that, depending on the extent to which the propulsion speed of active particles is dependent on their orientation, clusters in different shapes arise in many-particle systems. This might be a possible key to the realization of programmable matter.