Showing 20 articles starting at article 421
< Previous 20 articles Next 20 articles >
Categories: Biology: Evolutionary, Physics: Quantum Computing
Published Computational model captures the elusive transition states of chemical reactions



Researchers developed a way to quickly calculate the transition state structure of a chemical reaction, using machine-learning models.
Published Ancient DNA reveals how a chicken virus evolved to become more deadly



An international team of scientists led by geneticists and disease biologists has used ancient DNA to trace the evolution of Marek's Disease Virus (MDV). This global pathogen causes fatal infections in unvaccinated chickens and costs the poultry industry over $1 billion per year. The findings show how viruses evolve to become more virulent and could lead to the development of better ways to treat viral infections.
Published Can you change a chicken into a frog, a fish or a chameleon?



Researchers have developed a theoretical framework that can reproduce and predict the patterns associated with gastrulation in a chicken embryo.
Published A promising pairing: Scientists demonstrate new combination of materials for quantum science



For the first time, scientists publish results on a new chip composed of diamond and lithium niobate. The results demonstrate the combination as a promising candidate for quantum devices.
Published AI provides more accurate analysis of prehistoric and modern animals, painting picture of ancient world



A new study of the remains of prehistoric and modern African antelopes found that AI technology accurately identified animals more than 90% of the time compared to humans, who had much lower accuracy rates depending on the expert.
Published New understanding of ancient genetic parasite may spur medical breakthroughs



Researchers have determined the structure of the most common material in our genomes. New treatments for autoimmune diseases, cancer and neurodegeneration may follow.
Published Enzymes can't tell artificial DNA from the real thing



Researchers have come one step closer to unlocking the potential of synthetic DNA, which could help scientists develop never-before-seen proteins in the lab.
Published Cell types in the eye have ancient evolutionary origins



In a comparative analysis across vertebrates of the many cell types in the retina -- mice alone have 130 types -- researchers concluded that most cell types have an ancient evolutionary history. Their remarkable conservation across species suggests that the retina of the last common ancestor of all mammals, which roamed the earth some 200 million year ago, must have had a complexity rivaling the retina of modern mammals.
Published Hallmark quantum behavior in bouncing droplets



In a study that could help fill some holes in quantum theory, the team recreated a 'quantum bomb tester' in a classical droplet test.
Published New genes can arise from nothing



The complexity of living organisms is encoded within their genes, but where do these genes come from? Researchers resolved outstanding questions regarding the origin of small regulatory genes, and described a mechanism that creates their DNA palindromes. Under suitable circumstances, these palindromes evolve into microRNA genes.
Published Molecular fossils shed light on ancient life



Paleontologists are getting a glimpse at life over a billion years in the past based on chemical traces in ancient rocks and the genetics of living animals. New research combines geology and genetics, showing how changes in the early Earth prompted a shift in how animals eat.
Published Diamonds and rust help unveil 'impossible' quasi-particles



Researchers have discovered magnetic monopoles -- isolated magnetic charges -- in a material closely related to rust, a result that could be used to power greener and faster computing technologies.
Published New theory unites Einstein's gravity with quantum mechanics



The prevailing assumption has been that Einstein's theory of gravity must be modified, or 'quantized', in order to fit within quantum theory. This is the approach of two leading candidates for a quantum theory of gravity, string theory and loop quantum gravity. But a new theory challenges that consensus and takes an alternative approach by suggesting that spacetime may be classical -- that is, not governed by quantum theory at all.
Published Quantum physics: Superconducting Nanowires Detect Single Protein Ions



An international research team has achieved a breakthrough in the detection of protein ions: Due to their high energy sensitivity, superconducting nanowire detectors achieve almost 100% quantum efficiency and exceed the detection efficiency of conventional ion detectors at low energies by a factor of up to a 1,000. In contrast to conventional detectors, they can also distinguish macromolecules by their impact energy. This allows for more sensitive detection of proteins and it provides additional information in mass spectrometry.
Published Earliest-known fossil mosquito suggests males were bloodsuckers too



Researchers have found the earliest-known fossil mosquito in Lower Cretaceous amber from Lebanon. What's more, the well-preserved insects are two males of the same species with piercing mouthparts, suggesting they likely sucked blood. That's noteworthy because, among modern-day mosquitoes, only females are hematophagous, meaning that they use piercing mouthparts to feed on the blood of people and other animals.
Published Crocodile family tree mapped: New light shed on croc evolution



Around 250 million years ago, 700 species of reptiles closely related to the modern-day crocodile roamed the earth, now new research reveals how a complex interplay between climate change, species competition and habitat can help explain why just 23 species of crocodile survive today.
Published Genomic study sheds light on how carnivorous Asian pitcher plants acquired signature insect trap



Scientists sequenced the genome of the East Asian pitcher plant, Nepenthes gracilis, a species of carnivorous plant related to Venus flytraps, as well as sundews, beets and spinach.
Published Snake skulls show how species adapt to prey



By studying the skull shapes of dipsadine snakes, researchers have found how these species of snakes in Central and South America have evolved and adapted to meet the demands of their habitats and food sources.
Published A mixed origin made maize successful



Maize is one of the world's most widely grown crops. It is used for both human and animal foods and holds great cultural significance, especially for indigenous peoples in the Americas. Yet despite its importance, the origins of the grain have been hotly debated for more than a century. Now new research shows that all modern maize descends from a hybrid created just over 5000 years ago in central Mexico, thousands of years after the plant was first domesticated.
Published Researchers show an old law still holds for quirky quantum materials



Long before researchers discovered the electron and its role in generating electrical current, they knew about electricity and were exploring its potential. One thing they learned early on was that metals were great conductors of both electricity and heat. And in 1853, two scientists showed that those two admirable properties of metals were somehow related: At any given temperature, the ratio of electronic conductivity to thermal conductivity was roughly the same in any metal they tested. This so-called Wiedemann-Franz law has held ever since -- except in quantum materials. Now, a theoretical argument put forth by physicists suggests that the law should, in fact, approximately hold for one type of quantum material, the cuprate superconductors.