Showing 20 articles starting at article 721
< Previous 20 articles Next 20 articles >
Categories: Biology: Evolutionary, Physics: General
Published How to slow the spread of deadly 'superbugs'



Harnessing new advances in genomic surveillance technology could help detect the rise of deadly 'superbugs'.
Published Unexpected behavior discovered in active particles



Physicists have now shown that, depending on the extent to which the propulsion speed of active particles is dependent on their orientation, clusters in different shapes arise in many-particle systems. This might be a possible key to the realization of programmable matter.
Published Researchers develop DANGER analysis tool for the safer design of gene editing



A team of researchers has developed a software tool that provides a way for the safer design of genome editing in all organisms with a transcriptome. For about a decade, researchers have used the CRISPR technology for genome editing. However, there are some challenges in the use of CRISPR. The new analysis system overcomes these challenges and allows researchers to perform safer on- and off-target assessments without a reference genome. It holds the potential for applications in medicine, agriculture, and biological research.
Published Does urbanization trigger plant evolution?



Urban environments have become hotspots for understanding how rapid evolution occurs in response to extreme environmental changes. These habitats exert selective pressures on resident organisms that impact their evolutionary trajectories. Recently, researchers investigated how the creeping woodsorrel plant might adapt in response to elevated temperatures that result from urbanization. Understanding these effects can help predict evolutionary traits to manage plant evolution in the face of shifting climatic conditions.
Published Accelerating waves shed light on major problems in physics



Researchers at Tampere University and the University of Eastern Finland have reached a milestone in a study where they derived a new kind of wave equation, which applies for accelerating waves. The novel formalism has turned out to be an unexpectedly fertile ground for examining wave mechanics, with direct connections between accelerating waves, general theory of relativity, as well as the arrow of time.
Published Researchers demonstrate a high-speed electrical readout method for graphene nanodevices



Graphene is often referred to as a wonder material for its advantageous qualities. But its application in quantum computers, while promising, is stymied by the challenge of getting accurate measurements of quantum bit states with existing techniques. Now, researchers have developed design guidelines that enable radio-frequency reflectometry to achieve high-speed electrical readouts of graphene nanodevices.
Published You say genome editing, I say natural mutation



A plant geneticist and computational biologist teamed up to decipher the unpredictability of natural and engineered mutations in tomatoes. They discovered some combinations of mutations behave as expected while others are more erratic. Their work may help scientists find some order in the chaos of evolution and genome editing.
Published Imprinted genes in the 'parenting hub' of the brain determine if mice are good parents



Whether a mouse is a good or bad parent can be traced back to imprinted genes in key neurons in the 'parenting hub' in the brain, according to a new study.
Published A miniature magnetic resonance imager made of diamond



The development of tumors begins with miniscule changes within the body's cells; ion diffusion at the smallest scales is decisive in the performance of batteries. Until now the resolution of conventional imaging methods has not been high enough to represent these processes in detail. A research team has now developed diamond quantum sensors which can be used to improve resolution in magnetic imaging.
Published Electron-rich metals make ceramics tough to crack



Engineers have developed a recipe to make a certain class of ceramics tougher and more resistant to cracking. The newfound toughness of these ceramics paves the way for their use in extreme applications, such as spacecraft and other hypersonic vehicles.
Published Stolen genes allow parasitic control of behavior



A research team has discovered that parasites manipulate their hosts using stolen genes that they likely acquired through a phenomenon called horizontal gene transfer.
Published Scientists propose super-bright light sources powered by quasiparticles



Researchers have proposed ways to use quasiparticles to create light sources as powerful as the most advanced ones in existence today, but much smaller.
Published Electrical control of quantum phenomenon could improve future electronic devices



A new electrical method to conveniently change the direction of electron flow in some quantum materials could have implications for the development of next-generation electronic devices and quantum computers. A team of researchers has developed and demonstrated the method in materials that exhibit the quantum anomalous Hall (QAH) effect -- a phenomenon in which the flow of electrons along the edge of a material does not lose energy.
Published Going rogue: Scientists apply giant wave mechanics on a nanometric scale



Researchers have shown how the principles of rogue waves -- huge 30-meter waves that arise unexpectedly in the ocean -- can be applied on a nano scale, with dozens of applications from medicine to manufacturing.
Published Study elucidates evolution of mosquitoes and their hosts



Study creates a mosquito family tree to better understand disease transmission and host choice.
Published Milestone: Miniature particle accelerator works



Particle accelerators are crucial tools in a wide variety of areas in industry, research and the medical sector. The space these machines require ranges from a few square meters to large research centers. Using lasers to accelerate electrons within a photonic nanostructure constitutes a microscopic alternative with the potential of generating significantly lower costs and making devices considerably less bulky. Until now, no substantial energy gains were demonstrated. In other words, it has not been shown that electrons really have increased in speed significantly. Two teams of laser physicists have just succeeded in demonstrating a nanophotonic electron accelerator.
Published Superlensing without a super lens: Physicists boost microscopes beyond limits



Attempts to break the diffraction limit with 'super lenses' have all hit the hurdle of extreme visual losses. Now physicists have shown a new pathway to achieve superlensing with minimal losses, breaking through the diffraction limit by a factor of nearly four times. The key to their success was to remove the super lens altogether.
Published New insights into the genetics of the common octopus: Genome at the chromosome level decoded



Octopuses are fascinating animals -- and serve as important model organisms in neuroscience, cognition research and developmental biology. To gain a deeper understanding of their biology and evolutionary history, validated data on the composition of their genome is needed, which has been lacking until now. Scientists have now been able to close this gap and, in a new study, determined impressive figures: 2.8 billion base pairs -- organized in 30 chromosomes. What sounds so simple is the result of complex, computer-assisted genome analyses and comparisons with the genomes of other cephalopod species.
Published From a five-layer graphene sandwich, a rare electronic state emerges



When stacked in five layers in a rhombohedral pattern, graphene takes on a rare 'multiferroic' state, exhibiting both unconventional magnetism and an exotic electronic behavior known as ferro-valleytricity.
Published Physicists create new form of antenna for radio waves



Physicists have used a small glass bulb containing an atomic vapor to demonstrate a new form of antenna for radio waves. The bulb was 'wired up' with laser beams and could therefore be placed far from any receiver electronics.