Showing 20 articles starting at article 281
< Previous 20 articles Next 20 articles >
Categories: Biology: Evolutionary, Computer Science: General
Published Super Mario hackers' tricks could protect software from bugs



Video gamers who exploit glitches in games can help experts better understand buggy software, students suggest.
Published 2D materials rotate light polarization



Physicists have shown that ultra-thin two-dimensional materials such as tungsten diselenide can rotate the polarization of visible light by several degrees at certain wavelengths under small magnetic fields suitable for use on chips.
Published Accelerating the discovery of new materials via the ion-exchange method



Researchers have unveiled a new means of predicting how to synthesize new materials via the ion-exchange. Based on computer simulations, the method significantly reduces the time and energy required to explore for inorganic materials.
Published Teaching a computer to type like a human



A new typing model simulates the typing process instead of just predicting words.
Published Skyrmions move at record speeds: A step towards the computing of the future



Scientists have discovered that the magnetic nanobubbles known as skyrmions can be moved by electrical currents, attaining record speeds up to 900 m/s. Anticipated as future bits in computer memory, these nanobubbles offer enhanced avenues for information processing in electronic devices. Their tiny size provides great computing and information storage capacity, as well as low energy consumption. Until now, these nanobubbles moved no faster than 100 m/s, which is too slow for computing applications. However, thanks to the use of an antiferromagnetic material as medium, the scientists successfully had the skyrmions move 10 times faster than previously observed. These results offer new prospects for developing higher-performance and less energy-intensive computing devices.
Published Marine microbial populations: Potential sensors of the global change in the ocean



Animal and plant populations have been extensively studied, which has helped to understand ecosystem processes and evolutionary adaptations. However, this has not been the case with microbial populations due to the impossibility of isolating, culturing and analyzing the genetic content of the different species and their individuals in the laboratory. Therefore, although it is known that populations of microorganisms include a great diversity, this remains largely uncharacterized.
Published RNA's hidden potential: New study unveils its role in early life and future bioengineering



The origin of life continues to remain a matter of debate. The ribonucleic acid (RNA) world hypothesis proposes that 'ribozymes' which store genetic information and possess catalytic functions may have supported the activities of early life forms. Now, researchers explore how RNA elongation is regulated allosterically, shedding light on its impact on early life processes and offering insights into the fabrication of arbitrary RNA nanostructures with various modern applications.
Published How 3D printers can give robots a soft touch



Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult to make. A recent study demonstrates that soft skin pads doubling as sensors made from thermoplastic urethane can be efficiently manufactured using 3D printers.
Published Mountain chickadees have remarkable memories. A new study explains why



Mountain chickadees have among the best spatial memory in the animal kingdom. New research identifies the genes at play and offers insight into how a shifting climate may impact the evolution of this unique skill.
Published New butterfly species created 200,000 years ago by two species interbreeding



Researchers have shown that an Amazonian butterfly is a hybrid species, formed by two other species breeding together almost 200,000 years ago. Researchers have shown that an Amazonian butterfly is a hybrid species, formed by two other species breeding together almost 200,000 years ago.
Published Reproductive success improves after a single generation in the wild for descendants of some hatchery-origin Chinook salmon



Researchers who created 'family trees' for nearly 10,000 fish found that first-generation, wild-born descendants of hatchery-origin Chinook salmon in an Oregon river show improved fitness.
Published Seed ferns: Plants experimented with complex leaf vein networks 201 million years ago



According to a research team led by palaeontologists, the net-like leaf veining typical for today's flowering plants developed much earlier than previously thought, but died out again several times. Using new methods, the fossilized plant Furcula granulifer was identified as such an early forerunner. The leaves of this seed fern species already exhibited the net-like veining in the late Triassic (around 201 million years ago).
Published Twisted pollen tubes induce infertility



Plants with multiple sets of chromosomes, known as polyploids, are salt-tolerant or drought-resistant and often achieve higher yields. However, newly formed polyploid plants are often sterile or have reduced fertility and are unsuitable for breeding resistant lines. The reason is that the pollen tube in these plants grows incorrectly, which keeps fertilization from taking place. Pollen tube growth is mainly controlled by two genes that could be useful in crop breeding.
Published Millions of gamers advance biomedical research



4.5 million gamers around the world have advanced medical science by helping to reconstruct microbial evolutionary histories using a minigame included inside the critically and commercially successful video game, Borderlands 3. Their playing has led to a significantly refined estimate of the relationships of microbes in the human gut. The results of this collaboration will both substantially advance our knowledge of the microbiome and improve on the AI programs that will be used to carry out this work in future.
Published Evolution's recipe book: How 'copy paste' errors cooked up the animal kingdom



A series of whole genome and gene duplication events that go back hundreds of millions of years have laid the foundations for tissue-specific gene expression, according to a new study. The 'copy-paste' errors allowed animals to keep one copy of their genome or genes for fundamental functions, while the second copy could be used as raw material for evolutionary innovation. Events like these, at varying degrees of scale, occurred constantly throughout the bilaterian evolutionary tree and enabled traits and behaviours as diverse as insect flight, octopus camouflage and human cognition.
Published How seaweed became multicellular



A deep dive into macroalgae genetics has uncovered the genetic underpinnings that enabled macroalgae, or 'seaweed,' to evolve multicellularity. Three lineages of macroalgae developed multicellularity independently and during very different time periods by acquiring genes that enable cell adhesion, extracellular matrix formation, and cell differentiation, researchers report. Surprisingly, many of these multicellular-enabling genes had viral origins. The study, which increased the total number of sequenced macroalgal genomes from 14 to 124, is the first to investigate macroalgal evolution through the lens of genomics.
Published New computer vision tool wins prize for social impact



A team of computer scientists working on two different problems -- how to quickly detect damaged buildings in crisis zones and how to accurately estimate the size of bird flocks -- recently announced an AI framework that can do both. The framework, called DISCount, blends the speed and massive data-crunching power of artificial intelligence with the reliability of human analysis to quickly deliver reliable estimates that can quickly pinpoint and count specific features from very large collections of images.
Published 'Surprising' hidden activity of semiconductor material spotted by researchers



New research suggests that materials commonly overlooked in computer chip design actually play an important role in information processing, a discovery which could lead to faster and more efficient electronics. Using advanced imaging techniques, an international team found that the material that a semiconductor chip device is built on, called the substrate, responds to changes in electricity much like the semiconductor on top of it.
Published Breakthrough promises secure quantum computing at home



The full power of next-generation quantum computing could soon be harnessed by millions of individuals and companies, thanks to a breakthrough guaranteeing security and privacy. This advance promises to unlock the transformative potential of cloud-based quantum computing.
Published Oxidant pollutant ozone removes mating barriers between fly species



Researchers show that ozone levels, such as those found in many places on hot summer days today, destroy the sex pheromones of fruit fly species. As a result, some natural mating boundaries maintained by species-specific pheromones no longer exist. The research team has shown in experiments that flies of different species mate when exposed to ozone and produce hybrid offspring. Since most of these offspring are unable to reproduce, the results could provide another explanation for the global decline of insects.