Showing 20 articles starting at article 681
< Previous 20 articles Next 20 articles >
Categories: Biology: Evolutionary, Computer Science: General
Published This parasitic plant convinces hosts to grow into its own flesh--it's also an extreme example of genome shrinkage



Balanophora shed one third of its genes as it evolved into a streamlined parasitic plant -- an extreme degree of genome shrinkage even among parasites. Along the way this subtropical plant developed the ability to induce the host plant to grow into the parasite's own flesh -- forming chimeric organs that mix host and parasite tissues.
Published Dinosaur feathers reveal traces of ancient proteins



Palaeontologists have discovered X-ray evidence of proteins in fossil feathers that sheds new light on feather evolution.
Published Monkeys cause a stink in response to human noise



New research has found that monkeys increase their use of scent markings to compensate for human noise pollution. The study has investigated how primates change their communication strategies in response to noise pollution. The researchers studied endangered pied tamarins (Saguinus bicolor), which use both vocal calls and scent markings. The researchers found that the frequency of scent marking directly increased in line with noise decibel levels.
Published Scientists successfully maneuver robot through living lung tissue


Scientists have shown that their steerable lung robot can autonomously maneuver the intricacies of the lung, while avoiding important lung structures.
Published 'Garbatrage' spins e-waste into prototyping gold


Building on work in human-computer interaction that aims to incorporate sustainability and reuse into the field, researchers introduce 'garbatrage,' a framework for prototype builders centered around repurposing underused devices.
Published Let it flow: Recreating water flow for virtual reality


A research team has harnessed the power of deep reinforcement learning to replicate the flow of water when disturbed. The replication allowed for recreating water flow in real time based on only a small amount of data, opening up the possibility for virtual reality interactions involving water.
Published Slow growth in crocodile ancestors pre-dated their semi-aquatic lifestyle



A groundbreaking study is reshaping our understanding of crocodile evolution by pinpointing the onset of slow growth rates to the Late Triassic period, much earlier than the previously assumed Early Jurassic timeline. The research highlights newly discovered fossil crocodile ancestors (known as crocodylomorphs) that exhibited slow growth rates, similar to modern-day crocodilians. Intriguingly, these early crocodylomorphs were not the lethargic, semi-aquatic creatures we are familiar with today; they were small, active, and fully terrestrial. The study also suggests that this slow-growth strategy was not a mere evolutionary quirk but a survival mechanism, as only the slow-growing crocodylomorphs managed to survive the End-Triassic mass extinction. This stands in stark contrast to the fast-growing dinosaurs of the same era, setting the stage for the divergent evolutionary paths that would later define their modern descendants.
Published Cloud services without servers: What's behind it


A new generation of cloud services is on the rise. It is based on the paradigm of 'serverless computing'. A recent article deals with the history, status and potential of serverless computing.
Published Prehistoric fish fills 100 million year gap in evolution of the skull



X-rays of an ancient jawless fish shows earliest-known example of internal cartilage skull, unlike that of any other known vertebrate.
Published Researchers discover a new species of larger benthic foraminifer from the Ryukyu Islands



An international group of researchers have discovered a previously unknown species of large foraminifer, shedding new light on the ecological evolution and biodiversity of coral reefs in the Ryukyu Islands.
Published Combustion powers bug-sized robots to leap, lift and race


Researchers combined soft microactuators with high-energy-density chemical fuel to create an insect-scale quadrupedal robot that is powered by combustion and can outrace, outlift, outflex and outleap its electric-driven competitors.
Published Engineers grow full wafers of high-performing 2D semiconductor that integrates with state-of-the-art chips


Researchers have grown a high-performing 2D semiconductor to a full-size, industrial-scale wafer. In addition, the semiconductor material, indium selenide (InSe), can be deposited at temperatures low enough to integrate with a silicon chip.
Published Scientists develop method to detect deadly infectious diseases


Researchers have developed a way of detecting the early onset of deadly infectious diseases using a test so ultrasensitive that it could someday revolutionize medical approaches to epidemics. The test is an electronic sensor contained within a computer chip. It employs nanoballs -- microscopic spherical clumps made of tinier particles of genetic material -- and combines that technology with advanced electronics.
Published Tiny sea creatures reveal the ancient origins of neurons



A new study sheds new light on the origins of modern brain cells. Researchers find evidence that specialized secretory cells found in placozoans, tiny sea creatures the size of a grain of sand, have many similarities to the neuron, such as the genes required to create a partial synapse. From an evolutionary point of view, early neurons might have started as something like these cells, eventually gaining the ability to create a complete synapse, form axons and dendrites and create ion channels that generate fast electrical signals -- innovations which gave rise to the neuron in more complex animals such as jellyfish. Though the complete story of how the first neuron appeared remains to be told, the study demonstrates that the basic building blocks for our brain cells were forming in the ancestors of placozoans grazing inconspicuously in the shallow seas of Earth around 800 million years ago.
Published RNA for the first time recovered from an extinct species



A new study shows the isolation and sequencing of more than a century-old RNA molecules from a Tasmanian tiger specimen preserved at room temperature in a museum collection. This resulted in the reconstruction of skin and skeletal muscle transcriptomes from an extinct species for the first time. The researchers note that their findings have relevant implications for international efforts to resurrect extinct species, including both the Tasmanian tiger and the woolly mammoth, as well as for studying pandemic RNA viruses.
Published Genome editing: Reducing off-target mutations in DNA



Researchers have developed a novel genome editing technique known as NICER, which results in significantly fewer off-target mutations than CRISPR/Cas9 editing. The technique uses a different type of enzyme that makes single-stranded 'nicks' in the DNA. Repair of these nicks is more efficient and accurate than repair of double-strand breaks caused by the current CRISPR/Cas9 editing. This technique represents a novel approach for the treatment of genetic diseases caused by heterozygous mutations.
Published AI-driven tool makes it easy to personalize 3D-printable models


With Style2Fab, makers can rapidly customize models of 3D-printable objects, such as assistive devices, without hampering their functionality.
Published Vocal learning linked to problem solving skills and brain size



The better a songbird is at working its way around obstacles to retrieve a snack, the more complex its vocal learning ability will be.
Published Evolution wired human brains to act like supercomputers


Scientists have confirmed that human brains are naturally wired to perform advanced calculations, much like a high-powered computer, to make sense of the world through a process known as Bayesian inference.
Published Battery-free robots use origami to change shape in mid-air


Researchers have developed small robotic devices that can change how they move through the air by 'snapping' into a folded position during their descent. Each device has an onboard battery-free actuator, a solar power-harvesting circuit and controller to trigger these shape changes in mid-air.