Anthropology: Early Humans Anthropology: General Biology: Biochemistry Biology: Evolutionary Biology: Microbiology Biology: Zoology Ecology: Extinction Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Dinosaurs Paleontology: Fossils Paleontology: General
Published

Slow growth in crocodile ancestors pre-dated their semi-aquatic lifestyle      (via sciencedaily.com)     Original source 

A groundbreaking study is reshaping our understanding of crocodile evolution by pinpointing the onset of slow growth rates to the Late Triassic period, much earlier than the previously assumed Early Jurassic timeline. The research highlights newly discovered fossil crocodile ancestors (known as crocodylomorphs) that exhibited slow growth rates, similar to modern-day crocodilians. Intriguingly, these early crocodylomorphs were not the lethargic, semi-aquatic creatures we are familiar with today; they were small, active, and fully terrestrial. The study also suggests that this slow-growth strategy was not a mere evolutionary quirk but a survival mechanism, as only the slow-growing crocodylomorphs managed to survive the End-Triassic mass extinction. This stands in stark contrast to the fast-growing dinosaurs of the same era, setting the stage for the divergent evolutionary paths that would later define their modern descendants.

Biology: Evolutionary Biology: General Biology: Marine Ecology: Extinction Ecology: Nature Ecology: Sea Life Environmental: Biodiversity Geoscience: Earth Science Geoscience: Geography
Published

Researchers discover a new species of larger benthic foraminifer from the Ryukyu Islands      (via sciencedaily.com)     Original source 

An international group of researchers have discovered a previously unknown species of large foraminifer, shedding new light on the ecological evolution and biodiversity of coral reefs in the Ryukyu Islands.

Anthropology: General Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Marine Biology: Molecular Biology: Zoology Ecology: Sea Life
Published

Tiny sea creatures reveal the ancient origins of neurons      (via sciencedaily.com)     Original source 

A new study sheds new light on the origins of modern brain cells. Researchers find evidence that specialized secretory cells found in placozoans, tiny sea creatures the size of a grain of sand, have many similarities to the neuron, such as the genes required to create a partial synapse. From an evolutionary point of view, early neurons might have started as something like these cells, eventually gaining the ability to create a complete synapse, form axons and dendrites and create ion channels that generate fast electrical signals -- innovations which gave rise to the neuron in more complex animals such as jellyfish. Though the complete story of how the first neuron appeared remains to be told, the study demonstrates that the basic building blocks for our brain cells were forming in the ancestors of placozoans grazing inconspicuously in the shallow seas of Earth around 800 million years ago.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Ecology: Animals Ecology: Extinction Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Early Mammals and Birds Paleontology: Fossils Paleontology: General
Published

RNA for the first time recovered from an extinct species      (via sciencedaily.com)     Original source 

A new study shows the isolation and sequencing of more than a century-old RNA molecules from a Tasmanian tiger specimen preserved at room temperature in a museum collection. This resulted in the reconstruction of skin and skeletal muscle transcriptomes from an extinct species for the first time. The researchers note that their findings have relevant implications for international efforts to resurrect extinct species, including both the Tasmanian tiger and the woolly mammoth, as well as for studying pandemic RNA viruses.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Genome editing: Reducing off-target mutations in DNA      (via sciencedaily.com)     Original source 

Researchers have developed a novel genome editing technique known as NICER, which results in significantly fewer off-target mutations than CRISPR/Cas9 editing. The technique uses a different type of enzyme that makes single-stranded 'nicks' in the DNA. Repair of these nicks is more efficient and accurate than repair of double-strand breaks caused by the current CRISPR/Cas9 editing. This technique represents a novel approach for the treatment of genetic diseases caused by heterozygous mutations.

Biology: Evolutionary Biology: Zoology Ecology: Animals
Published

Vocal learning linked to problem solving skills and brain size      (via sciencedaily.com)     Original source 

The better a songbird is at working its way around obstacles to retrieve a snack, the more complex its vocal learning ability will be.

Biology: Botany Biology: Evolutionary Ecology: Endangered Species Ecology: Extinction Ecology: Nature Paleontology: Dinosaurs Paleontology: Fossils Paleontology: General
Published

Nature's great survivors: Flowering plants survived the mass extinction that killed the dinosaurs      (via sciencedaily.com)     Original source 

A new study by researchers from the University of Bath (UK) and Universidad Nacional Autónoma de México (Mexico) shows that flowering plants escaped relatively unscathed from the mass extinction that killed the dinosaurs 66 million years ago. Whilst they suffered some species loss, the devastating event helped flowering plants become the dominant type of plant today.

Computer Science: Quantum Computers
Published

A linear path to efficient quantum technologies      (via sciencedaily.com)     Original source 

Researchers have demonstrated that a key ingredient for many quantum computation and communication schemes can be performed with an efficiency that exceeds the commonly assumed upper theoretical limit -- thereby opening up new perspectives for a wide range of photonic quantum technologies.

Biology: Evolutionary Biology: Genetics Ecology: Animals
Published

Unlocking the genetic code of peppers: New study reveals insights into domestication and diversity      (via sciencedaily.com)     Original source 

Peppers are a versatile, flavorful, and widely popular crop, used not only as a healthy food source but also for their medicinal properties. Scientists have now sequenced the genomes of key cultivated and wild pepper species, offering unprecedented insights into pepper evolution, domestication, and genetic diversity.

Biology: Cell Biology Biology: Evolutionary Biology: Zoology Ecology: Animals
Published

You say tomato, these scientists say evolutionary mystery      (via sciencedaily.com)     Original source 

Biologists have found evidence for evolutionary 'syndromes'-- sets of traits that occur together -- that help to explain how tomatoes first evolved their distinctive blend of color, sweetness, acidity and aroma. The research not only shines a light on how fruits evolve in the wild, but will also be valuable to crop-improvement efforts aimed at breeding more nutritious and appealing varieties of fruits.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers make a significant step towards reliably processing quantum information      (via sciencedaily.com) 

Using laser light, researchers have developed the most robust method currently known to control individual qubits made of the chemical element barium. The ability to reliably control a qubit is an important achievement for realizing future functional quantum computers.

Biology: Evolutionary Biology: Marine Ecology: Animals Ecology: General Ecology: Nature Ecology: Research Ecology: Sea Life Environmental: Ecosystems Environmental: General Geoscience: Environmental Issues Geoscience: Geography Geoscience: Oceanography
Published

Scientists find evidence of sea star species hybridization      (via sciencedaily.com) 

A new study presents genomic evidence of hybridization between two closely related species of sea stars -- Asterias rubens, the common starfish, and Asterias forbesi, known as Forbes' sea star.

Biology: Biotechnology Biology: Evolutionary Biology: Genetics Biology: Microbiology Ecology: Animals
Published

Dog diversity unveiled by international DNA database      (via sciencedaily.com)     Original source 

An international consortium of scientists is using an unprecedentedly large database of canine DNA to take an unbiased look at how our furry friends evolved into the various breeds we know and love.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Machine learning contributes to better quantum error correction      (via sciencedaily.com) 

Researchers have used machine learning to perform error correction for quantum computers -- a crucial step for making these devices practical -- using an autonomous correction system that despite being approximate, can efficiently determine how best to make the necessary corrections.

Biology: Botany Biology: Evolutionary Biology: Genetics Ecology: Endangered Species Ecology: Nature
Published

How does the social behavior of wheat plants influence grain production?      (via sciencedaily.com)     Original source 

Researchers have investigated how the behavior of an individual wheat plant under limiting light conditions influences the performance of the whole community. They assessed morphological and biomass phenotypes of single plants grown in mixtures under sunlight and a simulated canopy shade, and the relevance of these phenotypes for the monoculture community in the field.

Anthropology: Early Humans Anthropology: General Biology: Evolutionary Ecology: Animals Ecology: Trees Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals
Published

Human shoulders and elbows first evolved as brakes for climbing apes      (via sciencedaily.com)     Original source 

Researchers report that the flexible shoulders and elbows that allow us to throw a football or reach a high shelf may have evolved as a natural braking system that let our primate ancestors get out of trees without dying. The researchers used sports-analysis software to compare the climbing movements of chimpanzees and small monkeys called mangabeys. While the animals climb up trees similarly, the researchers found that the shallow, rounded shoulder joints and shortened elbow bones that chimps have -- similar to humans -- allow them to fully extend their arms above their heads when climbing down, holding onto branches like a person going down a ladder to support their greater weight. When early humans left forests for the grassy savanna, these versatile appendages would have been essential for gathering food and using tools for hunting and defense. The findings are among the first to identify the significance of 'downclimbing' in the evolution of apes and early humans.

Anthropology: General Biology: Botany Biology: Evolutionary Ecology: Endangered Species Ecology: Nature Paleontology: Fossils Paleontology: General
Published

Pioneering research sheds surprising new light on evolution of plant kingdom      (via sciencedaily.com)     Original source 

A new study has uncovered intriguing insights into the evolution of plant biology, effectively rewriting the history of how they evolved over the past billion years.

Chemistry: Biochemistry Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Atomically-precise quantum antidots via vacancy self-assembly      (via sciencedaily.com) 

Scientists demonstrated a conceptual breakthrough by fabricating atomically precise quantum antidots using self-assembled single vacancies in a two-dimensional transition metal dichalcogenide.

Chemistry: Thermodynamics Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Deriving the fundamental limit of heat current in quantum mechanical many-particle systems      (via sciencedaily.com) 

Researchers have mathematically derived the fundamental limit of heat current flowing into a quantum system comprising numerous quantum mechanical particles in relation to the particle count. Further, they established a clearer understanding of how the heat current rises with increasing particle count, shedding light on the performance constraints of potential future quantum thermal devices.