Showing 20 articles starting at article 581
< Previous 20 articles Next 20 articles >
Categories: Biology: Evolutionary, Computer Science: Quantum Computers
Published New superconductors can be built atom by atom


The future of electronics will be based on novel kinds of materials. Sometimes, however, the naturally occurring topology of atoms makes it difficult for new physical effects to be created. To tackle this problem, researchers have now successfully designed superconductors one atom at a time, creating new states of matter.
Published Controlling signal routing in quantum information processing



Routing signals and isolating them against noise and back-reflections are essential in many practical situations in classical communication as well as in quantum processing. In a theory-experimental collaboration, a team has achieved unidirectional transport of signals in pairs of 'one-way streets'. This research opens up new possibilities for more flexible signaling devices.
Published Physicists work to prevent information loss in quantum computing



Nothing exists in a vacuum, but physicists often wish this weren't the case. If the systems that scientists study could be completely isolated from the outside world, things would be a lot easier. Take quantum computing. It's a field that's already drawing billions of dollars in support from tech investors and industry heavyweights including IBM, Google and Microsoft. But if the tiniest vibrations creep in from the outside world, they can cause a quantum system to lose information.
Published Finding the flux of quantum technology



We interact with bits and bytes everyday -- whether that's through sending a text message or receiving an email. There's also quantum bits, or qubits, that have critical differences from common bits and bytes. These photons -- particles of light -- can carry quantum information and offer exceptional capabilities that can't be achieved any other way. Unlike binary computing, where bits can only represent a 0 or 1, qubit behavior exists in the realm of quantum mechanics. Through "superpositioning," a qubit can represent a 0, a 1, or any proportion between. This vastly increases a quantum computer's processing speed compared to today's computers. Experts are now investigating the inside of a quantum-dot-based light emitter.
Published An easier way to learn quantum processes



Scientists show that even a few simple examples are enough for a quantum machine-learning model, the 'quantum neural networks', to learn and predict the behavior of quantum systems, bringing us closer to a new era of quantum computing.
Published Scientists edge toward scalable quantum simulations on a photonic chip



A system using photonics-based synthetic dimensions could be used to help explain complex natural phenomena.
Published Research breakthrough could be significant for quantum computing future



Scientists using one of the world's most powerful quantum microscopes have made a discovery that could have significant consequences for the future of computing. Researchers have discovered a spatially modulating superconducting state in a new and unusual superconductor Uranium Ditelluride (UTe2). This new superconductor may provide a solution to one of quantum computing's greatest challenges.
Published Researchers make a quantum computing leap with a magnetic twist



Scientists and engineers have announced a significant advancement in developing fault-tolerant qubits for quantum computing. In a pair of articles, they report that, in experiments with flakes of semiconductor materials -- each only a single layer of atoms thick -- they detected signatures of 'fractional quantum anomalous Hall' (FQAH) states. The team's discoveries mark a first and promising step in constructing a type of fault-tolerant qubit because FQAH states can host anyons -- strange 'quasiparticles' that have only a fraction of an electron's charge. Some types of anyons can be used to make what are called 'topologically protected' qubits, which are stable against any small, local disturbances.
Published Genetic secrets of America's favorite snack



In its simplest form, popcorn is pretty uncomplicated. Most supermarket varieties offer the choice of two kernel colors, yellow or white, and two kernel shapes, pointed or pearl. When popped, the flake typically expands into one of two shapes: mushroom or butterfly. But there's more to popcorn than meets the eye. New research reveals a wealth of untapped diversity lurking in popcorn's genetic code.
Published Orangutans can make two sounds at the same time, similar to human beatboxing, study finds



Orangutans can make two separate sounds simultaneously, much like songbirds or human beatboxers, according to a new study.
Published Humans' ancestors survived the asteroid impact that killed the dinosaurs



A Cretaceous origin for placental mammals, the group that includes humans, dogs and bats, has been revealed by in-depth analysis of the fossil record, showing they co-existed with dinosaurs for a short time before the dinosaurs went extinct.
Published 50-million-year-old katydid fossil reveals muscles, digestive tract, glands and a testicle



50 million years ago in what is now northwestern Colorado, a katydid died, sank to the bottom of a lake and was quickly buried in fine sediments, where it remained until its compressed fossil was recovered in recent years. When researchers examined the fossil under a microscope, they saw that not only had many of the insect's hard structures been preserved in the compressed shale, so had several internal organs and tissues, which are not normally fossilized.
Published 'Toggle switch' can help quantum computers cut through the noise



What good is a powerful computer if you can't read its output? Or readily reprogram it to do different jobs? People who design quantum computers face these challenges, and a new device may make them easier to solve.
Published How coral reefs can survive climate change



Similar to the expeditions of a hundred or two hundred years ago, the Tara Pacific expedition lasted over two years. The goal: to research the conditions for life and survival of corals. The ship crossed the entire Pacific Ocean, assembling the largest genetic inventory conducted in any marine system to date. The team's 70 scientists from eight countries took around 58,000 samples from the hundred coral reefs studied.
Published Extinct warbler's genome sequenced from museum specimens



The Bachman's warbler, a songbird that was last seen in North America nearly 40 years ago, was a distinct species and not a hybrid of its two living sister species, according a new study in which the full genomes of seven museum specimens of the bird were sequenced.
Published 'We're all Asgardians': New clues about the origin of complex life



According to a new study, eukaryotes -- complex life forms with nuclei in their cells, including all the world's plants, animals, insects and fungi -- trace their roots to a common Asgard archaean ancestor. That means eukaryotes are, in the parlance of evolutionary biologists, a 'well-nested clade' within Asgard archaea, similar to how birds are one of several groups within a larger group called dinosaurs, sharing a common ancestor.
Published Glass sponge genome furnishes insights into evolution of biomineralization



The genome of a glass sponge species suggests that silica skeletons evolved independently in several groups of sponges.
Published Climate change could lead to 'widespread chaos' for insect communities



New research explores how a warming world could impact ecosystems and derail the development of new species.
Published Scientists discover new embryonic cell type that self-destructs to protect the developing embryo



Scientists have uncovered a new quality control system that removes damaged cells from early developing embryos.
Published Open-source software to speed up quantum research



Quantum technology is expected to fundamentally change many key areas of society. Researchers are convinced that there are many more useful quantum properties and applications to explore than those we know today. A team of researchers has now developed open-source, freely available software that will pave the way for new discoveries in the field and accelerate quantum research significantly.