Biology: Biochemistry Biology: Evolutionary Biology: General Biology: Marine Biology: Zoology Ecology: Animals Ecology: Sea Life Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Fossils Paleontology: General
Published

These long-necked reptiles were decapitated by their predators, fossil evidence confirms      (via sciencedaily.com)     Original source 

In the age of dinosaurs, many marine reptiles had extremely long necks compared to reptiles today. While it was clearly a successful evolutionary strategy, paleontologists have long suspected that their long-necked bodies made them vulnerable to predators. Now, after almost 200 years of continued research, direct fossil evidence confirms this scenario for the first time in the most graphic way imaginable.

Biology: Biochemistry Biology: Botany Biology: Evolutionary Biology: General Biology: Genetics Ecology: Endangered Species Ecology: Nature
Published

From cross to self-pollination      (via sciencedaily.com)     Original source 

Biologists provide evidence for an alternative genetic mechanism that can lead to plants becoming self-pollinators.

Anthropology: General Archaeology: General Biology: Biochemistry Biology: Botany Biology: Evolutionary Biology: General Ecology: Endangered Species Ecology: Nature Paleontology: Fossils Paleontology: General
Published

Fossil study sheds light on famous spirals found in nature      (via sciencedaily.com)     Original source 

A 3D model of a 407-million-year-old plant fossil has overturned thinking on the evolution of leaves. The research has also led to fresh insights about spectacular patterns found in plants.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New technique in error-prone quantum computing makes classical computers sweat      (via sciencedaily.com)     Original source 

Today's quantum computers often calculate the wrong answer because of noisy environments that interfere with the quantum entanglement of qubits. IBM Quantum has pioneered a technique that accounts for the noise to achieve reliable results. They tested this error mitigation strategy against supercomputer simulations run by physicists, and for the hardest calculations, the quantum computer bested the supercomputer. This is evidence for the utility of today's noisy quantum computers for performing real-world calculations.

Biology: Developmental Biology: Evolutionary Biology: General Biology: Zoology Paleontology: General
Published

Which came first: The reptile or the egg?      (via sciencedaily.com)     Original source 

The earliest reptiles, birds and mammals may have borne live young, researchers have revealed.

Biology: Evolutionary Biology: General
Published

Study finds socially tolerant monkeys have better impulse control      (via sciencedaily.com)     Original source 

Socially tolerant species are better at controlling their emotions and behaviors, according to a new study of one of humanity's closest relatives.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Schrödinger's cat makes better qubits      (via sciencedaily.com)     Original source 

Drawing from Schrodinger's cat thought experiment, scientists have built a 'critical cat code' qubit that uses bosons to store and process information in a way that is more reliable and resistant to errors than previous qubit designs.

Anthropology: Early Humans Anthropology: General Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Paleontology: Fossils Paleontology: General
Published

Remains of an extinct world of organisms discovered      (via sciencedaily.com)     Original source 

Newly discovered biomarker signatures point to a whole range of previously unknown organisms that dominated complex life on Earth about a billion years ago. They differed from complex eukaryotic life as we know it, such as animals, plants and algae in their cell structure and likely metabolism, which was adapted to a world that had far less oxygen in the atmosphere than today.

Computer Science: Artificial Intelligence (AI) Computer Science: General Computer Science: Quantum Computers Energy: Technology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New superconducting diode could improve performance of quantum computers and artificial intelligence      (via sciencedaily.com)     Original source 

A team has developed a more energy-efficient, tunable superconducting diode -- a promising component for future electronic devices -- that could help scale up quantum computers for industry and improve artificial intelligence systems.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Ecology: Invasive Species Ecology: Nature Ecology: Trees Environmental: Biodiversity Environmental: Ecosystems Environmental: General
Published

Older trees accumulate more mutations than their younger counterparts      (via sciencedaily.com)     Original source 

A study of the relationship between the growth rate of tropical trees and the frequency of genetic mutations they accumulate suggests that older, long-lived trees play a greater role in generating and maintaining genetic diversity than short-lived trees.

Computer Science: Artificial Intelligence (AI) Computer Science: General Computer Science: Quantum Computers
Published

Quantum computers are better at guessing, new study demonstrates      (via sciencedaily.com)     Original source 

Researchers have demonstrated a quantum speedup over the most efficient classical computer algorithm possible for what is believed to be the first time.  The accomplishment was performed on an IBM Montreal Quantum Falcon r4 27-qubit device.

Biology: Biochemistry Biology: Botany Biology: Evolutionary Biology: General Ecology: Animals Ecology: General Ecology: Invasive Species Ecology: Nature Ecology: Research Ecology: Trees
Published

The other side of the story: How evolution impacts the environment      (via sciencedaily.com)     Original source 

Researchers show that an evolutionary change in the length of lizards' legs can have a significant impact on vegetation growth and spider populations on small islands in the Bahamas. This is one of the first times, the researchers say, that such dramatic evolution-to-environment effects have been documented in a natural setting.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Ecology: Endangered Species Ecology: Extinction Ecology: Nature
Published

Genomes of 233 primate species sequenced      (via sciencedaily.com)     Original source 

Researchers from 24 countries have analyzed the genomes of 809 individuals from 233 primate species, generating the most complete catalog of genomic information about our closest relatives to date. The project provides new insights into the evolution of primates, including humans, and their diversity. In baboons, for example, hybridization and gene flow between different species occurred in the past and is still ongoing in several regions of their range. This makes baboons a good model for the evolution of early human lineages within and outside Africa. In addition, using a specially designed AI algorithm, the genomic data enable new insights into the genetic causes of human diseases.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

The 'breath' between atoms -- a new building block for quantum technology      (via sciencedaily.com)     Original source 

Researchers have discovered they can detect atomic 'breathing,' or the mechanical vibration between two layers of atoms, by observing the type of light those atoms emitted when stimulated by a laser. The sound of this atomic 'breath' could help researchers encode and transmit quantum information.

Biology: Biochemistry Biology: Evolutionary Biology: General Ecology: Nature
Published

New study shows how adaptations to living in a cold climate promoted social evolution      (via sciencedaily.com)     Original source 

For the first time ever, scientists have uncovered evidence that a species' long-term adaptation to living in an extremely cold climate has led to the evolution of social behaviours including extended care by mothers, increased infant survival and the ability to live in large complex multilevel societies.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology
Published

Researchers show mobile elements monkeying around the genome      (via sciencedaily.com)     Original source 

Whole-genomic sequencing has revolutionized the amount and detail of genetic diversity now available to researchers to study. While the researchers previously had looked at a few hundred mobile elements or 'jumping genes,' primarily of the Alu and L1 types, they were now able to analyze over 200,000 elements computationally, confirming and expanding on previous studies. Their findings provide more evidence of the fluidity of species and continuous spread of mobile and transposable genetic elements.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing
Published

Understanding the tantalizing benefits of tantalum for improved quantum processors      (via sciencedaily.com)     Original source 

Researchers working to improve the performance of superconducting qubits, the foundation of quantum computers, have been experimenting using different base materials in an effort to increase the coherent lifetimes of qubits. The coherence time is a measure of how long a qubit retains quantum information, and thus a primary measure of performance. Recently, scientists discovered that using tantalum in superconducting qubits makes them perform better, but no one has been able to determine why -- until now.