Showing 20 articles starting at article 1101
< Previous 20 articles Next 20 articles >
Categories: Biology: Evolutionary, Chemistry: Biochemistry
Published Scalable production technique for low-calorie sugar substitute



Scientists have discovered a new route to produce the low-calorie sugar allulose (D-psicose) at lower cost with high yield.
Published Biological fingerprints in soil show where diamond-containing ore is buried



Researchers have identified buried kimberlite, the rocky home of diamonds, by testing the DNA of microbes in the surface soil. These 'biological fingerprints' can reveal what minerals are buried tens of meters below the earth's surface without having to drill. The researchers believe it is the first use of modern DNA sequencing of microbial communities in the search for buried minerals. The research represents a new tool for mineral exploration, where a full toolbox could save prospectors time and a lot of money,
Published Finding the genes that help kingfishers dive without hurting their brains



Scientists studied the genomes of 30 kingfisher species to try to identify the genes that allow kingfishers to dive headfirst into water without huring their brains. The researchers found that the diving birds have unusual mutations to the genes that produce tau: a protein that helps stabilize tiny structures in the brain, but which can build up in humans with traumatic brain injuries or Alzheimer's disease. The researchers suspect that these variations in the kingfishers' tau proteins might protect their brains when they dive.
Published How quantum light 'sees' quantum sound



Researchers have proposed a new way of using quantum light to 'see' quantum sound. A new paper reveals the quantum-mechanical interplay between vibrations and particles of light, known as photons, in molecules. It is hoped that the discovery may help scientists better understand the interactions between light and matter on molecular scales. And it potentially paves the way for addressing fundamental questions about the importance of quantum effects in applications ranging from new quantum technologies to biological systems.
Published New methods for effective transport of large genes in gene therapy



One problem in gene therapy is that not all genes transfer equally well into the target cells. Researchers have now developed a flexible method to transfer large genes efficiently and without significant side effects. The approach has strong potential for therapeutic use.
Published Cathode active materials for lithium-ion batteries could be produced at low temperatures



Layered lithium cobalt oxide, a key component of lithium-ion batteries, has been synthesized at temperatures as low as 300°C and durations as short as 30 minutes.
Published How to slow the spread of deadly 'superbugs'



Harnessing new advances in genomic surveillance technology could help detect the rise of deadly 'superbugs'.
Published Unexpected behavior discovered in active particles



Physicists have now shown that, depending on the extent to which the propulsion speed of active particles is dependent on their orientation, clusters in different shapes arise in many-particle systems. This might be a possible key to the realization of programmable matter.
Published Mimics human tissue, fights bacteria: New biomaterial hits the sweet spot



A new lab-made substance mimics human tissue and could reduce or replace the use of animal-derived materials in biomedical research.
Published Chemists, engineers craft adjustable arrays of microscopic lenses



A team has created minuscule lenses that it can expand or contract in mere seconds -- modifying their magnification, focal length and other optical properties in the process. That on-the-fly adaptability bodes well for the design's use in micro-projection systems and even the culturing of cells, the researchers said.
Published Researchers develop DANGER analysis tool for the safer design of gene editing



A team of researchers has developed a software tool that provides a way for the safer design of genome editing in all organisms with a transcriptome. For about a decade, researchers have used the CRISPR technology for genome editing. However, there are some challenges in the use of CRISPR. The new analysis system overcomes these challenges and allows researchers to perform safer on- and off-target assessments without a reference genome. It holds the potential for applications in medicine, agriculture, and biological research.
Published Does urbanization trigger plant evolution?



Urban environments have become hotspots for understanding how rapid evolution occurs in response to extreme environmental changes. These habitats exert selective pressures on resident organisms that impact their evolutionary trajectories. Recently, researchers investigated how the creeping woodsorrel plant might adapt in response to elevated temperatures that result from urbanization. Understanding these effects can help predict evolutionary traits to manage plant evolution in the face of shifting climatic conditions.
Published You say genome editing, I say natural mutation



A plant geneticist and computational biologist teamed up to decipher the unpredictability of natural and engineered mutations in tomatoes. They discovered some combinations of mutations behave as expected while others are more erratic. Their work may help scientists find some order in the chaos of evolution and genome editing.
Published Imprinted genes in the 'parenting hub' of the brain determine if mice are good parents



Whether a mouse is a good or bad parent can be traced back to imprinted genes in key neurons in the 'parenting hub' in the brain, according to a new study.
Published International team develops novel DNA nano engine



An international team of scientists has recently developed a novel type of nano engine made of DNA. It is driven by a clever mechanism and can perform pulsing movements. The researchers are now planning to fit it with a coupling and install it as a drive in complex nano machines.
Published Physical theory improves protein folding prediction



Proteins are important molecules that perform a variety of functions essential to life. To function properly, many proteins must fold into specific structures. However, the way proteins fold into specific structures is still largely unknown. Researchers have developed a novel physical theory that can accurately predict how proteins fold. Their model can predict things previous models cannot. Improved knowledge of protein folding could offer huge benefits to medical research, as well as to various industrial processes.
Published NUS scientists develop innovative magnetic gel that heals diabetic wounds three times faster



A team of researchers has engineered an innovative magnetic wound-healing gel that promises to heal diabetic wounds three times faster, reduce the rates of recurrence, and in turn, lower the incidents of limb amputations. The innovative magnetic hydrogel, which contains skin cells for healing as well as magnetic particles, takes a comprehensive 'all-in-one' approach to wound healing, accelerating the process on several fronts. To maximize therapeutic results, a wireless external magnetic device is used to activate skin cells and accelerate the wound healing process.
Published A miniature magnetic resonance imager made of diamond



The development of tumors begins with miniscule changes within the body's cells; ion diffusion at the smallest scales is decisive in the performance of batteries. Until now the resolution of conventional imaging methods has not been high enough to represent these processes in detail. A research team has now developed diamond quantum sensors which can be used to improve resolution in magnetic imaging.
Published Cobalt-free battery for cleaner, greener power



High-capacity and reliable rechargeable batteries are a critical component of many devices and even modes of transport. They play a key role in the shift to a greener world. A wide variety of elements are used in their production, including cobalt, the production of which contributes to some environmental, economic, and social issues. A team now presents a viable alternative to cobalt which in some ways can outperform state-of-the-art battery chemistry. It also survives a large number of recharge cycles, and the underlying theory can be applied to other problems.
Published Stolen genes allow parasitic control of behavior



A research team has discovered that parasites manipulate their hosts using stolen genes that they likely acquired through a phenomenon called horizontal gene transfer.