Showing 20 articles starting at article 41

< Previous 20 articles        Next 20 articles >

Categories: Biology: Evolutionary, Chemistry: Biochemistry

Return to the site home page

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: Biochemistry Chemistry: General Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

A taste for carbon dioxide      (via sciencedaily.com)     Original source 

The remarkable affinity of the microbial enzyme iron nitrogenase for the greenhouse gas CO2 makes it promising for future biotechnologies.

Chemistry: Biochemistry Computer Science: General
Published

New brain-computer interface allows man with ALS to 'speak' again      (via sciencedaily.com)     Original source 

A new brain-computer interface translates brain signals into speech with up to 97 percent accuracy. Researchers implanted sensors in the brain of a man with severely impaired speech due to amyotrophic lateral sclerosis (ALS). The man was able to communicate his intended speech within minutes of activating the system.

Biology: Biochemistry Biology: Biotechnology Biology: Evolutionary Biology: General Biology: Genetics
Published

How bread dough gave rise to civilization      (via sciencedaily.com)     Original source 

A major international study has explained how bread wheat helped to transform the ancient world on its path to becoming the iconic crop that today helps sustain a global population of eight billion.

Chemistry: Biochemistry Chemistry: General Energy: Alternative Fuels Energy: Batteries Energy: Fossil Fuels Energy: Technology Physics: General
Published

A method that paves the way for improved fuel cell vehicles      (via sciencedaily.com)     Original source 

More efficient and longer-lasting fuel cells are essential for fuel cell-powered heavy-duty hydrogen vehicles to be an alternative to combustion fuelled counterparts. Researchers have developed an innovative method to study and understand how parts of fuel cells degrade over time. This is an important step towards the improved performance of fuel cells and them becoming commercially successful.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Exploring the structures of xenon-containing crystallites      (via sciencedaily.com)     Original source 

Noble gases have a reputation for being unreactive, inert elements, but more than 60 years ago Neil Bartlett demonstrated the first way to bond xenon. He created XePtF6, an orange-yellow solid. Because it's difficult to grow sufficiently large crystals that contain noble gases, some of their structures -- and therefore functions -- remain elusive. Now, researchers have successfully examined tiny crystallites of noble gas compounds. They report structures of multiple xenon compounds.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Technology
Published

Halogen bonding for selective electrochemical separation, path to sustainable chemical processing demonstrated      (via sciencedaily.com)     Original source 

A team has reported the first demonstration of selective electrochemical separation driven by halogen bonding. This was achieved by engineering a polymer that modulates the charge density on a halogen atom when electricity is applied. The polymer then attracts only certain targets -- such as halides, oxyanions, and even organic molecules -- from organic solutions, a feature that has important implications for pharmaceuticals and chemical synthesis processes.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Biology: Zoology Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals
Published

Rewriting the evolutionary history of critical components of the nervous system      (via sciencedaily.com)     Original source 

A new study has rewritten the conventionally understood evolutionary history of certain ion channels -- proteins critical for electrical signaling in the nervous system. The study shows that the Shaker family of ion channels were present in microscopic single cell organisms well before the common ancestor of all animals and thus before the origin of the nervous system.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

Breakthrough in nanotechnology: Viewing the invisible with advanced microscopy      (via sciencedaily.com)     Original source 

Scientists have made a groundbreaking discovery in the field of nanotechnology. They have developed a novel microscopy method that allows for the unprecedented visualization of nanostructures and their optical properties.

Biology: Biochemistry Biology: General Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Why carbon nanotubes fluoresce when they bind to certain molecules      (via sciencedaily.com)     Original source 

Nanotubes can serve as biosensors. They change their fluorescence when they bind to certain molecules. Until now, it was unclear why. Researchers have gained new insights into the cause of the fluorescence.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Physics: General
Published

How mortal filaments' self-assemble and maintain order: Align or die      (via sciencedaily.com)     Original source 

A previously unknown mechanism of active matter self-organization essential for bacterial cell division follows the motto 'dying to align': Misaligned filaments 'die' spontaneously to form a ring structure at the center of the dividing cell. The work could find applications in developing synthetic self-healing materials.

Chemistry: Biochemistry
Published

Breakthrough heart MRI technique accurately predicts heart failure risk in general population      (via sciencedaily.com)     Original source 

MRI scans could replace invasive heart tests, as new research shows they can reliably estimate pressures inside the heart to predict if a patient will develop heart failure.

Chemistry: Biochemistry
Published

Treating radiation wounds with aspirin hydrogels      (via sciencedaily.com)     Original source 

Radiation is a powerful tool for treating cancer, but prolonged exposure can damage the skin. Radiation-induced skin injuries are painful and increase a person's chances of infection and long-term inflammation. Now, researchers report an aspirin-containing hydrogel that mimics the nutrient-rich fluid between cells and accelerates healing of skin damaged by radiation in animals. With further development, the new salve could provide effective and rapid wound healing for humans.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Molecular
Published

Taking a 'one in a million' shot to tackle dopamine-linked brain disorders      (via sciencedaily.com)     Original source 

With the help of a tiny, transparent worm called Caenorhabditis elegans, researchers have identified novel players in dopamine signaling by taking advantage of a powerful platform generated via the Million Mutation Project (MMP) for the rapid identification of mutant genes based on their functional impact. They can seek insights from simpler organisms whose genes bear striking similarity to those found in humans and where opportunities for genetic insights to disease can be pursued more efficiently and inexpensively.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Energy: Technology
Published

Increasing solid-state electrolyte conductivity and stability using helical structure      (via sciencedaily.com)     Original source 

Solid-state electrolytes have been explored for decades for use in energy storage systems and in the pursuit of solid-state batteries. These materials are safer alternatives to the traditional liquid electrolyte -- a solution that allows ions to move within the cell -- used in batteries today. However, new concepts are needed to push the performance of current solid polymer electrolytes to be viable for next generation materials.

Chemistry: Biochemistry Energy: Alternative Fuels Environmental: General
Published

Engineering researchers enhance perovskite solar cells durability with first-of-its-kind chiral-structured 'springy' interface      (via sciencedaily.com)     Original source 

A research team has constructed an unprecedented chiral-structured interface in perovskite solar cells, which enhances the reliability and power conversion efficiency of this fast-advancing solar technology and accelerates its commercialization.

Biology: Biochemistry Biology: Cell Biology Biology: General Chemistry: Biochemistry
Published

How do butterflies stick to branches during metamorphosis?      (via sciencedaily.com)     Original source 

Most of us learned about butterfly metamorphosis as a kid -- a wriggly caterpillar molts its skin to form a tough chrysalis and emerges as a beautiful butterfly. But how exactly do chrysalises stay anchored as the butterfly brews within? Research shows that, despite their silks being weak and thin on their own, caterpillars can expertly spin them into chrysalis support structures resembling hook-and-loop fasteners and multi-strand safety tethers.

Biology: Biochemistry Biology: Cell Biology Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry Physics: Optics
Published

3D laser printing with bioinks from microalgae      (via sciencedaily.com)     Original source 

Microalgae such as the diatom Odontella aurita and the green alga Tetraselmis striata are especially suitable as 'biofactories' for the production of sustainable materials for 3D laser printing due to their high content in lipids and photoactive pigments. An international research team has succeeded for the first time in manufacturing inks for printing complex biocompatible 3D microstructures from the raw materials extracted from the microalgae.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Computer Science: Virtual Reality (VR) Offbeat: Computers and Math Offbeat: General Physics: Optics
Published

New technology uses light to engrave erasable 3D images      (via sciencedaily.com)     Original source 

Researchers invented a technique that uses a specialized light projector and a photosensitive chemical additive to imprint two- and three-dimensional images inside any polymer. The light-based engraving remains in the polymer until heat or light are applied, which erases the image and makes it ready to use again. The technology is intended for any situation where having detailed, precise visual data in a compact and easily customizable format could be critical, such as planning surgeries and developing architectural designs.