Showing 20 articles starting at article 781
< Previous 20 articles Next 20 articles >
Categories: Biology: Evolutionary, Chemistry: Biochemistry
Published Chemists decipher reaction process that could improve lithium-sulfur batteries



Lithium-sulfur batteries have exceptional theoretical capacity and performance in combination with an element in abundant supply. But the intricate reaction mechanism, particularly during discharge, has been challenging to solve. Researchers have identified the key pathways to a complex sulfur reduction reaction that leads to energy loss and reduced battery life span. The study's findings establish the whole reaction network for the first time and offer insight into electrocatalyst design for improved batteries.
Published Improving fuel cell durability with fatigue-resistant membranes



In hydrogen fuel cells, electrolyte membranes frequently undergo deformation and develop cracks during operation. A research team has recently introduced a fatigue-resistant polymer electrolyte membrane for hydrogen fuel cells, employing an interpenetrating network of Nafion (a plastic electrolyte) and perfluoropolyether (a rubbery polymer). This innovation will not only improve fuel cell vehicles but also promises advancements in diverse technologies beyond transportation, spanning applications from drones to desalination filters and backup power sources.
Published Scientists develop new biocontainment method for industrial organisms



Researchers have developed a new biocontainment method for limiting the escape of genetically engineered organisms used in industrial processes.
Published Solving an age-old mystery about crystal formation



A crystals expert has published an answer to how crystals are formed and how molecules become a part of them, solving an age-old mystery about crystal formation.
Published New species of Jurassic pterosaur discovered on the Isle of Skye



A new species of pterosaur from specimens found on the Isle of Skye, Scotland, has been announced.
Published Smells like evolution: Fruit flies reveal surprises in chemical sensing



New study reveals how gene expression shapes the diverse smelling and tasting abilities of different fly species. Most genes are surprisingly stable, but thousands have evolved to create unique olfactory landscapes. Sex differences in sensing are widespread and involve specific cell types in key tissues. The study provides insights into the evolution of sensory systems in general, with potential implications for understanding human olfaction.
Published Microbial division of labor produces higher biofuel yields



Scientists have found a way to boost ethanol production via yeast fermentation, a standard method for converting plant sugars into biofuels. Their approach relies on careful timing and a tight division of labor among synthetic yeast strains to yield more ethanol per unit of plant sugars than previous approaches have achieved.
Published Scientist shows focused ultrasound can reach deep into the brain to relieve pain



Scientists have found soundwaves from low-intensity focused ultrasound aimed at a place deep in the brain called the insula can reduce both the perception of pain and other effects of pain, such as heart rate changes.
Published How food availability could catalyze cultural transmission in wild orangutans



The proverb "necessity is the mother of invention" has been used to describe the source from which our cultural evolution springs. After all, need in times of scarcity has forced humans to continually invent new technologies that have driven the remarkable cumulative culture of our species. But an invention only becomes cultural if it is learned and spread by many individuals. In other words, the invention must be socially transmitted. But what are the forces that drive social transmission?
Published Researchers develop rapid test for detecting fentanyl



Researchers have developed a first-of-its-kind, handheld electrochemical sensor that can accurately detect fentanyl in urine within seconds. The proof-of-concept technology can detect even trace amounts of fentanyl with 98% accuracy using a small portable device without costly and time-consuming lab analysis.
Published Ultra-sensitive lead detector could significantly improve water quality monitoring



Engineers have developed an ultra-sensitive sensor made with graphene that can detect extraordinarily low concentrations of lead ions in water. The device achieves a record limit of detection of lead down to the femtomolar range, which is one million times more sensitive than previous technologies.
Published Rare 3D fossils show that some early trees had forms unlike any you've ever seen



In the fossil record, trees typically are preserved with only their trunks. They don't usually include any leaves to show what their canopies and overall forms may have looked like. In a new study, researchers describe fossilized trees from New Brunswick, Canada with a surprising and unique three-dimensional crown shape.
Published How leafcutter ants cultivate a fungal garden to degrade plants and provide insights into future biofuels



Scientists developed a new method to map exactly how a fungus works with leafcutter ants in a complex microbial community to degrade plant material at the molecular level. The team's insights are important for biofuels development.
Published Researchers 3D-print functional human brain tissue



It's an achievement with important implications for scientists studying the brain and working on treatments for a broad range of neurological and neurodevelopmental disorders, such as Alzheimer's and Parkinson's disease.
Published Photonics-based wireless link breaks speed records for data transmission



Researchers demonstrated a 300 GHz-band wireless link that was able to transmit data over a single channel at a rate of 240 gigabits per second. The wireless communication system employs signal generators based on lasers that have ultra-low phase noise in the sub-terahertz band. This rate is the highest so far reported at these frequencies and is a substantial step forward in 300 GHz-band communications for 6G networks.
Published Plant receptors that control immunity and development share a common origin



Researchers have traced the origin and evolutionary trajectory of plant immune receptors. Their discovery will make it easier to identify immune receptor genes from genomic information and could help in the development of pathogen-resistant crops.
Published Short X-ray pulses reveal the source of light-induced ferroelectricity in SrTiO3



Researchers have gained new insights into the development of the light-induced ferroelectric state in SrTiO3. They exposed the material to mid-infrared and terahertz frequency laser pulses and found that the fluctuations of its atomic positions are reduced under these conditions. This may explain why the dipolar structure is more ordered than in equilibrium and why the laser pulses induce a ferroelectric state in the material.
Published Key dynamics of 2D nanomaterials: View to larger-scale production



A team of researchers mapped out how flecks of 2D materials move in liquid -- knowledge that could help scientists assemble macroscopic-scale materials with the same useful properties as their 2D counterparts.
Published Engineers unmask nanoplastics in oceans for the first time, revealing their true shapes and chemistry



Millions of tons of plastic waste enter the oceans each year. The sun's ultraviolet light and ocean turbulence break down these plastics into invisible nanoparticles that threaten marine ecosystems. In a new study, engineers have presented clear images of nanoplastics in ocean water off the coasts of China, South Korea and the United States, and in the Gulf of Mexico. These tiny plastic particles, which originated from such consumer products as water bottles, food packaging and clothing, were found to have surprising diversity in shape and chemical composition.
Published Groundbreaking genome editing tools unlock new possibilities for precision medicine



A team of researchers has achieved a major breakthrough in genome editing technology. They've developed a cutting-edge method that combines the power of designer-recombinases with programmable DNA-binding domains to create precise and adaptable genome editing tools.