Showing 20 articles starting at article 161
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular, Chemistry: Organic Chemistry
Published Unlocking the world of bacteria



Bacteria possess unique traits with great potential for benefiting society. However, current genetic engineering methods to harness these advantages are limited to a small fraction of bacterial species. A team has now introduced a novel approach that can make many more bacteria amenable to genetic engineering. Their method, called IMPRINT, uses cell-free systems to enhance DNA transformation across various bacterial strains.
Published The on-and-off affair in DNA



Researchers have discovered that in thale cresses histone H3 lysine-9 (H3K9) methylation, conventionally thought to be a mark of turning off gene transcription, can also turn on gene expression via the interactions of two other proteins and histone marks. The molecular mechanisms demonstrate that rather than functioning as a simple 'off switch,' H3K9 methylation is more like a 'dimmer switch' that fine-tunes DNA transcription. The discovery suggests there might be similar mechanisms in other organisms, too.
Published Slipping a note to a neighbor: The cellular way



Study reveals how drug molecules bind in channels between neighboring cells, changing intercellular communication.
Published Towards non-toxic antifouling agents: A novel method for total synthesis of scabrolide F



Norcembranolide diterpenes, isolated from the soft corals of the genus Sinularia, are important compounds for the development of new drugs, owing to their diverse biological activities. However, total synthesis methods for these compounds are scarce. Now, a team of researchers has achieved the total synthesis of scabrolide F, a norcembranolide diterpene. They also revealed its non-toxic antifouling properties. This novel method can lead to the development of new drugs and antifouling agents.
Published Revealing the dynamic choreography inside multilayer vesicles



Our cells and the machinery inside them are engaged in a constant dance. This dance involves some surprisingly complicated choreography within the lipid bilayers that comprise cell membranes and vesicles -- structures that transport waste or food within cells. In a recent paper, researchers shed some light on how these vesicles self-assemble, knowledge that could help scientists design bio-inspired vesicles for drug-delivery or inspire them to create life-like synthetic materials.
Published Zebrafish reveal how bioelectricity shapes muscle development



New research describes how nerve cells and muscle cells communicate through electrical signals during development -- a phenomenon known as bioelectricity. The communication, which takes place via specialized channels between cells, is vital for proper development and behavior. The study identifies specific genes that control the process, and pins down what happens when it goes wrong. The finding offers clues to the genetic origins of muscle disorders in humans.
Published Discovery of vast sex differences in cellular activity has major implications for disease treatment



The study reveals vast differences in gene activity within the mitochondria of males compared to females. This is the first study to test effects of all 37 genes in the mitochondrial genome -- genes that copepods and humans share. The study found that males demonstrate more activity across all protein-coding mitochondrial genes than females. Although the study looks at tiny marine organisms called copepods, the findings have weighty implications for human medicine.
Published Myths about intermittent fasting, debunked



Research shows that the increasingly popular weight-loss strategy is safe. Intermittent fasting has become an increasingly popular way to lose weight without counting calories. And a large body of research has shown it s safe. Still, several myths about fasting have gained traction.
Published Researchers develop RNA-targeting technology for precisely manipulating parts of human genes



Researchers have harnessed a bacterial immune defense system, known as CRISPR, to efficiently and precisely control the process of RNA splicing. The technology opens the door to new applications, including systematically interrogating the functions of parts of genes and correcting splicing deficiencies that underlie numerous diseases and disorders.
Published Removal of excess chloride ions by plants when subjected to salt stress



Researchers have discovered a salt adaptation mechanism in plants that facilitates chloride removal from the roots and enhancing salinity tolerance. A research team has uncovered a novel mechanism of plant adaptation to salt stress involving the NaCl-induced translocation of a specific chloride channel protein, AtCLCf.
Published How cells boost gene expression



The function of non-coding RNA in the cell has long been a mystery to researchers. Unlike coding RNA, non-coding RNA does not produce proteins -- yet it exists in large quantities. A research team has now discovered an important function of antisense RNA (asRNA): the researchers found that asRNA acts as a 'superhighway' in cell transport and thus accelerates gene expression.
Published Membrane protein analogues could accelerate drug discovery



Researchers have created a deep learning pipeline for designing soluble analogues of key protein structures used in pharmaceutical development, sidestepping the prohibitive cost of extracting these proteins from cell membranes.
Published Mirror-image chemicals may revolutionize drug delivery



More than 130 years after cyclodextrins were first discovered and reported, a team of scientists has created chemical mirror images of these complex carbohydrates in the laboratory. This discovery may revolutionize how medications are delivered to patients.
Published How targeted nutrients can fight cancer



An international research team has discovered a new way to effectively treat cancer, by using nutrients to reactivate suppressed metabolic pathways in cancer cells.
Published Where to put head and tail?



Formation of the body axes is a critical part of embryonic development. They guarantee that all body parts end up where they belong and that no ears grow on our backs. The head-tail axis, for example, determines the orientation of the two ends of the body. It was previously assumed that this axis is largely determined by the interplay between the Nodal and BMP signals. However, there appears to be another player in this system, as researchers have now discovered by using an embryo-like model system they developed. In the absence of BMP, the signalling molecule beta-catenin takes on the role of the Nodal antagonist. This new mechanism could be a flexible solution for axis formation in embryos with different shapes.
Published How the ketogenic diet improves healthspan and memory in aging mice



The ketogenic diet has its fanatics and detractors among dieters, but either way, the diet has a scientifically documented impact on memory in mice. While uncovering how the high fat, low carbohydrate diet boosts memory in older mice, scientists identified a new molecular signaling pathway that improves synapse function and helps explain the diet's benefit on brain health and aging.
Published New material puts eco-friendly methanol conversion within reach



Researchers have developed innovative, eco-friendly quantum materials that can drive the transformation of methanol into ethylene glycol. This discovery opens up new possibilities for using eco-friendly materials in photocatalysis, paving the way for sustainable chemical production.
Published Custom-made molecules designed to be invisible while absorbing near-infrared light



Researchers used theoretical calculations assessing electron orbital symmetry to synthesize new molecule designed to be both transparent and colorless while absorbing near-infrared light. This compound demonstrates the first systematic approach to producing such materials and have applications in advanced electronics. This compound also shows semiconducting properties.
Published Golden ball mills as green catalysts



A gold-coated milling vessel for ball mills proved to be a real marvel: without any solvents or environmentally harmful chemicals, the team was able to use it to convert alcohols into aldehydes. The catalytic reaction takes place at the gold surface and is mechanically driven. The vessel can be reused multiple times. 'This opens up new prospects for the use of gold in catalysis and shows how traditional materials can contribute to solving modern environmental problems in an innovative way,' says Borchardt.
Published Molecular sponge for the electronics of the future



An international research team has succeeded in developing a new type of material in the rather young research field of covalent organic frameworks. The new two-dimensional polymer is characterized by the fact that its properties can be controlled in a targeted and reversible manner. This has brought the researchers a step closer to the goal of realizing switchable quantum states.