Showing 20 articles starting at article 261

< Previous 20 articles        Next 20 articles >

Categories: Biology: Molecular, Chemistry: Organic Chemistry

Return to the site home page

Chemistry: General Chemistry: Organic Chemistry Energy: Batteries
Published

Eco-friendly and affordable battery for low-income countries      (via sciencedaily.com)     Original source 

A battery made from zinc and lignin that can be used over 8000 times. This has been developed with a vision to provide a cheap and sustainable battery solution for countries where access to electricity is limited.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Geoscience: Geochemistry
Published

How to make ubiquitous plastics biodegradable      (via sciencedaily.com)     Original source 

Polystyrene is made from styrene building blocks and is the most widely used plastic in terms of volume, for example in packaging. Unlike PET, which can now be produced and recycled using biotechnological methods, the production of polystyrene has so far been a purely chemical process. The plastic can't be broken down by biotechnological means, either. Researchers are looking for ways to rectify this: An international team decoded a bacterial enzyme that plays a key role in styrene degradation. This paves the way for biotechnological application.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Molecular
Published

Insights into protein evolution      (via sciencedaily.com)     Original source 

A research team has unveiled a breakthrough in understanding how specific genetic sequences, known as pseudogenes, evolve.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Biology: Zoology Offbeat: General Offbeat: Plants and Animals
Published

Fruit fly testes offer potential tool against harmful insects      (via sciencedaily.com)     Original source 

A way to curb nagging insects has been flying under our radar -- an enzyme from fruit fly testes. The compound could control bugs that carry disease and harm crops by stunting their ability to procreate, researchers have found.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species Offbeat: Plants and Animals
Published

Like dad and like mum ... all in one plant      (via sciencedaily.com)     Original source 

Scientists have established a system to generate clonal sex cells in tomato plants and used them to design the genomes of offspring. The fertilization of a clonal egg from one parent by a clonal sperm from another parent led to plants containing the complete genetic information of both parents.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Molecular
Published

New molecule mimics the anti-clotting action of blood-sucking organisms      (via sciencedaily.com)     Original source 

Nature gave ticks, mosquitoes and leaches a quick-acting way to keep blood from clotting while they extract their meal from a host. Now the key to that method has been harnessed by a team of researchers as a potential anti-clotting agent that could be used as an alternative to heparin during angioplasty, dialysis care, surgeries and other procedures.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Research on centromere structure yields new insights into the mechanisms of chromosome segregation errors      (via sciencedaily.com)     Original source 

Researchers have made a surprising new discovery in the structure of the centromere, a structure that is involved in ensuring that chromosomes are segregated properly when a cell divides. Mistakes in chromosome segregation can lead to cell death and cancer development. The researchers discovered that the centromere consists of two subdomains. This fundamental finding has important implications for the process of chromosome segregation and provides new mechanisms underlying erroneous divisions in cancer cells. The research was published in Cell on May 13th 2024.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Marine Biology: Microbiology Biology: Molecular Ecology: Sea Life Environmental: Water
Published

How do genetically identical water fleas develop into male or female?      (via sciencedaily.com)     Original source 

Researchers have used a novel combination of short-read and long-read RNA sequencing to identify the different isoforms of genes expressed in the crustacean Daphnia magna. Males and females are genetically identical, but using this technique the team revealed genes that switch the predominant isoform in a male-female-dependent manner. This study may help further advance technologies in crustacean aquaculture.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Research shows that 'softer' proteins can cross into the nucleus quicker      (via sciencedaily.com)     Original source 

Researchers have discovered that how soft or rigid proteins are in certain regions can dictate how fast or slow they enter the nucleus.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Cellular activity hints that recycling is in our DNA      (via sciencedaily.com)     Original source 

Introns are perhaps one of our genome's biggest mysteries. They are DNA sequences that interrupt the sensible protein-coding information in your genes, and need to be 'spliced out.'

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Molecular Ecology: Nature Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Scientists unlock key to breeding 'carbon gobbling' plants with a major appetite      (via sciencedaily.com)     Original source 

The discovery of how a critical enzyme 'hidden in nature's blueprint' works sheds new light on how cells control key processes in carbon fixation, a process fundamental for life on Earth. The discovery could help engineer climate resilient crops capable of sucking carbon dioxide from the atmosphere more efficiently, helping to produce more food in the process.

Chemistry: General Chemistry: Organic Chemistry Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

New 'forever chemical' cleanup strategy discovered      (via sciencedaily.com)     Original source 

A method has been discovered to treat water heavily contaminated with unhealthful forever chemicals, known by chemists as PFAS or poly- and per-fluoroalkyl substances. It involves treating heavily contaminated water with ultraviolet (UV) light, sulfite, and a process called electrochemical oxidation. It breaks up strong fluorine-to-carbon bonds in the PFAS compounds and other concentrated organic compounds in heavily polluted water. The reaction also occurs at room temperature without a need for additional heat or high pressure. This method is expected to be useful in cleanups of PFAS pollution from decades of fire suppressant foam use at military facilities.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Biology: Zoology
Published

New sex-determining mechanism in African butterfly discovered      (via sciencedaily.com)     Original source 

In a study of a species of African butterfly, researchers have discovered a previously undescribed molecular mechanism of how the sex of an embryo is initially specified.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Graphene
Published

2D all-organic perovskites: potential use in 2D electronics      (via sciencedaily.com)     Original source 

Perovskites are among the most researched topics in materials science. Recently, a research team has solved an age-old challenge to synthesize all-organic two-dimensional perovskites, extending the field into the exciting realm of 2D materials. This breakthrough opens up a new field of 2D all-organic perovskites, which holds promise for both fundamental science and potential applications.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Getting dirty to clean up the chemical industry's environmental impact      (via sciencedaily.com)     Original source 

The global chemical industry is a major fossil fuel consumer and climate change contributor; however, new research has identified how the sector could clean up its green credentials by getting dirty.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

An epigenome editing toolkit to dissect the mechanisms of gene regulation      (via sciencedaily.com)     Original source 

A recent study led to the development of a powerful epigenetic editing technology. The system unlocks the ability to precisely program chromatin modifications at any specific position in the genome, to understand their causal role in transcription regulation. This innovative approach will help to investigate the role of chromatin modifications in many biological processes, and to program desired gene activity responses, which may prove useful in disease settings.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemists produce new-to-nature enzyme containing boron      (via sciencedaily.com)     Original source 

Chemists created an enzyme with boronic acid at its reactive center. This approach can produce more selective reactions with boron, and allows the use of directed evolution to improve its catalytic power.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: Biochemistry Chemistry: Organic Chemistry Environmental: General
Published

Why is breaking down plant material for biofuels so slow?      (via sciencedaily.com)     Original source 

Tracking individual enzymes during the breakdown of cellulose for biofuel production has revealed how several roadblocks slow this process when using plant material that might otherwise go to waste. The research may lead to new ways to improve the breakdown process and make the non-edible parts of plants and other plant waste, such as forestry residue, a more competitive source of biofuels.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

'Better than graphene' material development may improve implantable technology      (via sciencedaily.com)     Original source 

Move over, graphene. There's a new, improved two-dimensional material in the lab. Borophene, the atomically thin version of boron first synthesized in 2015, is more conductive, thinner, lighter, stronger and more flexible than graphene, the 2D version of carbon. Now, researchers have made the material potentially more useful by imparting chirality -- or handedness -- on it, which could make for advanced sensors and implantable medical devices.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology Biology: Molecular
Published

Fruit fly model identifies key regulators behind organ development      (via sciencedaily.com)     Original source 

A new computational model simulating fruit fly wing development has enabled researchers to identify previously hidden mechanisms behind organ generation. An research team developed a fruit fly model to reverse engineer the mechanisms that generate organ tissue.