Showing 20 articles starting at article 481
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular, Chemistry: Organic Chemistry
Published Microscopy: Overcoming the traditional resolution limit for the fast co-tracking of molecules



Researchers have developed an innovative method to simultaneously track rapid dynamic processes of multiple molecules at the molecular scale.
Published By growing animal cells in rice grains, scientists dish up hybrid food



From lab-grown chicken to cricket-derived protein, these innovative alternatives offer hope for a planet struggling with the environmental and ethical impacts of industrial agriculture. Now, scientists add a new recipe to the list -- cultured beef rice -- by growing animal muscle and fat cells inside rice grains. The method results in a nutritious and flavorful hybrid food that, once commercialized, could offer a more affordable protein alternative with a smaller carbon footprint.
Published Controlling root growth direction could help save crops and mitigate climate change



Scientists have determined how the well-known plant hormone ethylene is crucial in controlling the angle at which roots grow. The findings can be used to engineer plants and crops that withstand the environmental stresses of climate change and drought, and perhaps to create plants that remove carbon dioxide from the atmosphere and store it deep underground to help mitigate climate change.
Published Personalized adhesives for inner healing -- now tailored just for you



Scientists develop novel underwater bio-adhesive patches with mussel adhesive protein.
Published Low-cost microbe can speed biological discovery



Researchers have created a new version of a microbe to compete economically with E. coli -- a bacteria commonly used as a research tool due to its ability to synthesize proteins -- to conduct low-cost and scalable synthetic biological experiments.
Published New trial highlights incremental progress towards a cure for HIV-1



A new clinical trial suggests that a combination of the drug vorinostat and immunotherapy can coax HIV-infected cells out of latency and attack them. The findings highlight how close -- yet still far -- researchers have come to developing a cure for HIV-1.
Published Why do flies fall in love? Researchers tease out the signals behind fruit fly courtship songs



Researchers have pinpointed the group of neurons in the nerve cord -- a structure analogous to our spinal cord -- that produce and pattern the fly's two major courtship songs. They've also measured neuronal activity in these cells while flies were singing to understand how these neurons control each type of song.
Published Nutrients direct intestinal stem cell function and affect aging



The capacity of intestinal stem cells to maintain cellular balance in the gut decreases upon aging. Researchers have discovered a new mechanism of action between the nutrient adaptation of intestinal stem cells and aging. The finding may make a difference when seeking ways to maintain the functional capacity of the aging gut.
Published Not only in information technology: Restart also works in chemical simulations



Scientists have discovered that a known practice in information technology can also be applied to chemistry. Researchers found that to enhance the sampling in chemical simulations, all you need to do is stop and restart.
Published Key advance for capturing carbon from the air



A chemical element so visually striking that it was named for a goddess shows a 'Goldilocks' level of reactivity -- neither too much nor too little -- that makes it a strong candidate as a carbon scrubbing tool.
Published Towards A Better Way of Releasing Hydrogen Stored in Hydrogen Boride Sheets



Hydrogen stored in hydrogen boride sheets can be efficiently released electrochemically, report scientists. Through a series of experiments, they demonstrated that dispersing these sheets in an organic solvent and applying a small voltage is enough to release all the stored hydrogen efficiently. These findings suggest hydrogen boride sheets could soon become a safe and convenient way to store and transport hydrogen, which is a cleaner and more sustainable fuel.
Published Illuminating the invisible: Detecting proteins linked to diseases



Engineers have pioneered a new way to visualize the smallest protein clusters, skirting the physical limitations of light-powered microscopes and opening new avenues for detecting the proteins implicated in diseases like Alzheimer's and testing new treatments.
Published Greenhouse gas repurposed



Cutting-edge research converted waste carbon dioxide into a potential precursor for chemicals and carbon-free fuel.
Published New research uncovers biological drivers of heart disease risk



Over the past 15 years, researchers have identified hundreds of regions in the human genome associated with heart attack risk. However, researchers lack efficient ways to explore how these genetic variants are molecularly connected to cardiovascular disease, limiting efforts to develop therapeutics. To streamline analysis of hundreds of genetic variants associated with coronary artery disease (CAD), a team of researchers combined multiple sequencing and experimental techniques to map the relationship between known CAD variants and the biological pathways they impact.
Published BESSY II: Molecular orbitals determine stability



Carboxylic acid dianions (fumarate, maleate and succinate) play a role in coordination chemistry and to some extent also in the biochemistry of body cells. A team has now analyzed their electronic structures using RIXS in combination with DFT simulations. The results provide information not only on electronic structures but also on the relative stability of these molecules which can influence an industry's choice of carboxylate dianions, optimizing both the stability and geometry of coordination polymers.
Published Gut microbiome changes during pregnancy may influence immune system response



A new study identifies numerous pathways by which the gut microbiome may change the immune system.
Published New approach to tackling bacterial infections identified



Researchers have identified a new approach to controlling bacterial infections. The team found a way to turn on a vital bacterial defense mechanism to fight and manage bacterial infections. The defense system, called cyclic oligonucleotide-based antiphage signaling system (CBASS), is a natural mechanism used by certain bacteria to protect themselves from viral attacks. Bacteria self-destruct as a means to prevent the spread of virus to other bacterial cells in the population.
Published Researchers discover key to molecular mystery of how plants respond to changing conditions



A team of researchers recently published a pioneering study that answers a central question in biology: how do organisms rally a wide range of cellular processes when they encounter a change -- either internally or in the external environment -- to thrive in good times or survive the bad times? The research, focused on plants, identifies the interactions between four compounds: pectin, receptor proteins FERONIA and LLG1 and the signal RALF peptide.
Published Chemists decipher reaction process that could improve lithium-sulfur batteries



Lithium-sulfur batteries have exceptional theoretical capacity and performance in combination with an element in abundant supply. But the intricate reaction mechanism, particularly during discharge, has been challenging to solve. Researchers have identified the key pathways to a complex sulfur reduction reaction that leads to energy loss and reduced battery life span. The study's findings establish the whole reaction network for the first time and offer insight into electrocatalyst design for improved batteries.
Published Improving fuel cell durability with fatigue-resistant membranes



In hydrogen fuel cells, electrolyte membranes frequently undergo deformation and develop cracks during operation. A research team has recently introduced a fatigue-resistant polymer electrolyte membrane for hydrogen fuel cells, employing an interpenetrating network of Nafion (a plastic electrolyte) and perfluoropolyether (a rubbery polymer). This innovation will not only improve fuel cell vehicles but also promises advancements in diverse technologies beyond transportation, spanning applications from drones to desalination filters and backup power sources.