Showing 20 articles starting at article 541
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular, Chemistry: Thermodynamics
Published Boiled bubbles jump to carry more heat



The topic of water and the way it can move producing water droplets that leap -- propelled by surface tension -- and frost that jumps -- by way of electrostatics -- is a central focus of a group of scientists. Having incorporated the two phases of liquid and solid in the first two volumes of their research, their third volume investigates a third phase, with boiling water.
Published Macrophages 'eat' insulin-producing cells to regulate insulin after mice have given birth



Pregnancy brings a rise in pancreatic beta cells -- the cells that produce insulin. Shortly after birth, these cells return to their normal levels. The mechanisms behind this process had remained a mystery. But now a research group has revealed that white blood cells called macrophages 'eat' these cells.
Published Researchers have cracked the cellular code on protein folding, offering hope for new therapeutic avenues for many diseases



While we often think of diseases as caused by foreign bodies -- bacteria or viruses -- there are hundreds of diseases affecting humans that result from errors in cellular production of its proteins. A team of researchers recently leveraged the power of cutting-edge technology, including an innovative technique called glycoproteomics, to unlock the carbohydrate-based code that governs how certain classes of proteins form themselves into the complex shapes necessary to keep us healthy.
Published New technique efficiently offers insight into gene regulation



Researchers have developed a new technique called MAbID. This allows them to simultaneously study different mechanisms of gene regulation, which plays a major role in development and disease. MAbID offers new insights into how these mechanisms work together or against each other.
Published Unlocking the secret strength of marine mussels



How do you create strong, yet quick-release connections between living and non-living tissues? This is a question that continues to puzzle bioengineers who aim to create materials that bond together for advanced biomedical applications. Looking to nature for inspiration, this research zeroed in on the marine mussel byssus, a fibrous holdfast, which these bivalve mollusks use to anchor themselves in seashore habitats.
Published Shedding light on the synthesis of sugars before the origin of life



Pentoses are essential carbohydrates in the metabolism of modern lifeforms, but their availability on early Earth is unclear since these molecules are unstable. Now, researchers reveal a chemical pathway compatible with early Earth conditions, by which C6 aldonates could have acted as a source of pentoses without the need for enzymes. Their findings provide clues about primitive biochemistry and bring us closer to understanding life's origin.
Published Clever dosage control mechanism of biallelic genes



Researchers have uncovered a mechanism that safeguards the biallelic expression of haploinsufficient genes, shedding light on the importance of having two copies of each chromosome. A study identified the epigenetic regulator MSL2 an 'anti-monoallelic' factor that maintains biallelic gene dosage. This discovery not only reveals a communication system between parental alleles but also points to potential therapeutic strategies for diseases associated with haploinsufficient genes.
Published Key protein in blood vessel's growth identified



New research identifies the class II PI3K-C2b protein, a member of the PI3 family of kinases, as one of the key regulators of blood vessels growth in humans and other mammals. Mutations in these family of proteins may lead to vascular malformations and the precise understanding of the whole process is instrumental in opening the door to new therapeutic approaches in the future.
Published Releasing brakes on biocatalysis



Enzymes from microorganisms can produce hydrogen (H2) under certain conditions, which makes them potential biocatalysts for biobased H2 technologies. In order to make this hydrogen production efficient, researchers are trying to identify and eliminate possible limiting factors. These include formaldehyde, which occurs naturally as a metabolic product in cells and inhibits the particularly efficient [FeFe] hydrogenase.
Published Scientists harness flower 'super power' to pave the way for new drug treatments



Researchers have developed a way of joining up the head and tail of a protein, making it more stable and easier to get into cells.
Published Scientist discovers potential brain link between stress, emotional eating



Scientists describe how they identified a molecule that may trigger over-consumption of comfort foods after a threatening event.
Published Promising salt for heat storage



Salt batteries can store summer heat to be used in winter, but which salt works best for the purpose?
Published New clues into the head-scratching mystery of itch



Scientists show for the first time that bacteria can cause itch by activating nerve cells in the skin. The findings can inform new therapies to treat itch that occurs in inflammatory skin conditions like eczema and dermatitis.
Published Nutrient found in beef and dairy improves immune response to cancer



Trans-vaccenic acid (TVA), a long-chain fatty acid found in meat and dairy products from grazing animals such as cows and sheep, improves the ability of CD8+ T cells to infiltrate tumors and kill cancer cells, according to a new study.
Published Team discovers rules for breaking into Pseudomonas



Researchers report that they have found a way to get antibacterial drugs through the nearly impenetrable outer membrane of Pseudomonas aeruginosa, a bacterium that -- once it infects a person -- is notoriously difficult to treat.
Published Toward sustainable energy applications with breakthrough in proton conductors



Donor doping into a mother material with disordered intrinsic oxygen vacancies, instead of the widely used strategy of acceptor doping into a material without oxygen vacancies, can greatly enhance the conductivity and stability of perovskite-type proton conductors at intermediate and low temperatures of 250--400 °C.
Published Laser-powered 'tweezers' reveal universal mechanism viruses use to package up DNA



Researchers have used laser-powered ‘optical tweezers’ to reveal a universal motor mechanism used by viruses for packaging their DNA into infectious particles.
Published Unearthing how a carnivorous fungus traps and digests worms



A new analysis sheds light on the molecular processes involved when a carnivorous species of fungus known as Arthrobotrys oligospora senses, traps and consumes a worm.
Published Coffee grounds may hold key to preventing neurodegenerative diseases



A team of researchers found that caffeic-acid based Carbon Quantum Dots (CACQDs), which can be derived from spent coffee grounds, have the potential to protect brain cells from the damage caused by several neurodegenerative diseases.
Published Heart repair via neuroimmune crosstalk



Unlike humans, zebrafish can completely regenerate their hearts after injury. They owe this ability to the interaction between their nervous and immune systems, as researchers now report.