Showing 20 articles starting at article 661

< Previous 20 articles        Next 20 articles >

Categories: Biology: Molecular, Chemistry: Thermodynamics

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

An advance in cryo-EM could be a significant boon for research on potential cancer therapies      (via sciencedaily.com)     Original source 

A technology called cryo-electron microscopy enables scientists to see the atomic structure of biological molecules in high resolution. But to date, it has been ineffective for imaging small molecules. A team of biochemists devised a solution that makes it possible to hold small protein molecules in place while they're being imaged, which will enable cryo-EM to produce much clearer images of such molecules. The advance is significant because small and medium-sized protein molecules are an area of focus in research on potential new drugs for cancer and other diseases.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics
Published

Accelerating sustainable semiconductors with 'multielement ink'      (via sciencedaily.com)     Original source 

Scientists have demonstrated 'multielement ink' -- the first 'high-entropy' semiconductor that can be processed at low-temperature or room temperature. The new material could enable cost-effective and energy-efficient semiconductor manufacturing.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

New information on the most important early stage of embryonic development      (via sciencedaily.com)     Original source 

A new discovery by researchers challenges our current understanding of gastrulation, the most important stage of early embryonic development.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry
Published

Tiny CRISPR tool could help shred viruses      (via sciencedaily.com)     Original source 

Scientists mapped out the three-dimensional structure of one of the smallest known CRISPR-Cas13 systems then used that knowledge to modify its structure and improve its accuracy.

Chemistry: Biochemistry Chemistry: Thermodynamics Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Desalination system could produce freshwater that is cheaper than tap water      (via sciencedaily.com)     Original source 

Researchers have designed a new solar desalination system that takes in saltwater and heats it with natural sunlight. The system flushes out accumulated salt, so replacement parts aren't needed often, meaning the system could potentially produce drinking water at a rate and price that is cheaper than tap water.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Researchers discover disease-causing stem cells in lungs of cystic fibrosis patients      (via sciencedaily.com)     Original source 

Experts in cloning and stem cell science are reporting that five lung stem cell variants dominate the lungs of patients with advanced cystic fibrosis, and that these variants drive key aspects of CF pathology including inflammation, fibrosis and mucin secretion.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Chemistry: Thermodynamics
Published

Separating molecules requires lots of energy. This new, heat-resistant membrane could change that      (via sciencedaily.com)     Original source 

A research team has created a new, heat-resistant membrane that can withstand harsh environments -- high temperatures, high pressure and complex chemical solvents -- associated with industrial separation processes. It could eventually be used as a less energy intensive alternative to distillation and other industrial processes that separate molecules that ultimately serve as ingredients in medicine, chemicals and other products.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry
Published

A close-up of biological nanomachines: Researchers take a deep look at peroxisomal processes      (via sciencedaily.com) 

The cell organelles known as 'peroxisomes' dispose toxic substances and fats in the human body, among other things, and, in doing so, they prevent serious illnesses. The 'Pex' group of proteins (peroxisomes biogenesis factors) keep these 'detox units' functioning properly -- and now researchers have shown, at the atomic level, how these highly complex processes proceed.

Chemistry: Biochemistry Chemistry: Thermodynamics Physics: General Physics: Optics Physics: Quantum Physics
Published

Light and sound waves reveal negative pressure      (via sciencedaily.com) 

Negative pressure is a rare and challenging-to-detect phenomenon in physics. Using liquid-filled optical fibers and sound waves, researchers have now discovered a new method to measure it. In collaboration with the Leibniz Institute of Photonic Technologies in

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Space: Exploration Space: General Space: The Solar System
Published

Did life exist on Mars? Other planets? With AI's help, we may know soon      (via sciencedaily.com)     Original source 

Scientists have discovered a simple and reliable test for signs of past or present life on other planets -- 'the holy grail of astrobiology.' Researchers report that, with 90% accuracy, their artificial intelligence-based method distinguished modern and ancient biological samples from those of abiotic origin.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Same genes behind heart muscle disorders in humans and Dobermanns      (via sciencedaily.com)     Original source 

Researchers have made a significant finding in determining the genetic background of dilated cardiomyopathy in Dobermanns. This research helps us understand the genetic risk factors related to fatal diseases of the heart muscle and the mechanisms underlying the disease, and offers new tools for their prevention.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Ecology: Endangered Species Ecology: Nature Offbeat: General Offbeat: Plants and Animals
Published

This parasitic plant convinces hosts to grow into its own flesh--it's also an extreme example of genome shrinkage      (via sciencedaily.com)     Original source 

Balanophora shed one third of its genes as it evolved into a streamlined parasitic plant -- an extreme degree of genome shrinkage even among parasites. Along the way this subtropical plant developed the ability to induce the host plant to grow into the parasite's own flesh -- forming chimeric organs that mix host and parasite tissues.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry
Published

Researchers develop first method to study microRNA activity in single cells      (via sciencedaily.com) 

Researchers have developed the first method to uncover the tasks that microRNAs perform in single cells. This is a huge improvement over existing state-of-the-art methods that require millions of cells and will for the first time allow researchers to study microRNAs in complex tissues such as brains.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Split gene-editing tool offers greater precision      (via sciencedaily.com) 

To make a gene-editing tool more precise and easier to control, engineers split it into two pieces that only come back together when a third molecule is added.

Chemistry: Thermodynamics Energy: Technology Environmental: General Environmental: Water
Published

No shortcuts: New approach may help extract more heat from geothermal reservoirs      (via sciencedaily.com) 

Geothermal heat offers a promising source of renewable energy with almost zero emissions, but it remains a relatively expensive option to generate electricity. A new technique may help prevent 'short-circuits' that can cause geothermal power plants to halt production, potentially improving the efficiency of geothermal power, the researchers said.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Molecular
Published

Scientists regenerate neurons that restore walking in mice after paralysis from spinal cord injury      (via sciencedaily.com)     Original source 

In a new study in mice, researchers have uncovered a crucial component for restoring functional activity after spinal cord injury. The neuroscientists have shown that re-growing specific neurons back to their natural target regions led to recovery, while random regrowth was not effective.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Unzipping mRNA rallies plant cells to fight infection      (via sciencedaily.com)     Original source 

Living things from plants to humans must constantly adjust the chemical soup of proteins -- the workhorse molecules of life -- inside their cells to adapt to stress or changing conditions. Now, researchers have identified a previously unknown molecular mechanism that helps explain how they do it. A team now reveals hairpin-like structures of mRNA that, by zipping and unzipping, help cells change the mix of proteins they produce when under stress.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Molecular
Published

Exercise and muscle regulation: Implications for diabetes and obesity      (via sciencedaily.com)     Original source 

How do our muscles respond at the molecular level to exercise? Researchers have unraveled the cellular basis and signaling pathways responsible for the positive impact of physical activity on our overall health. Regulatory T cells, a type of immune cell, play a critical role in ensuring proper muscle function. These novel insights are paving the path towards precision medicines targeting metabolic disorders like obesity and diabetes, as well as muscle-related illnesses.