Showing 20 articles starting at article 1061
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular, Energy: Technology
Published Near-universal T cell immunity towards a broad range of bacteria



Typically T cells of the immune system respond to a specific feature (antigen) of a microbe, thereby generating protective immunity. Scientists have discovered an exception to this rule. Namely, a group of divergent bacterial pathogens, including pneumococci, all share a small highly conserved protein sequence, which is both presented and recognized by human T cells in a conserved population-wide manner.
Published Luring the virus into a trap



Viruses like influenza A and Ebola invade human cells in a number of steps. Research teams investigated the final stages of viral penetration using electron tomography and computer simulations. So-called fusion pores, through which the viral genome is released into the host cell, play a central role in these processes. If they can be prevented from forming, the virus is also blocked. The Heidelberg scientists describe previously unknown mechanisms, which might lead to new approaches to prevent infections.
Published Researchers reveal an ancient mechanism for wound repair



The study is the first to identify a damage response pathway that is distinct from but parallel to the classical pathway triggered by pathogens.
Published Transforming highways for high-speed travel and energy transport



Researchers developed a proof of concept for a superconducting highway that could transport vehicles and electricity, cooling the necessary superconductors with a pipeline of liquid hydrogen. Most magnetic levitation designs feature the superconductor inside the vehicle, which is suspended above a magnetic track. The authors decided to flip that arrangement upside down, putting the superconductor on the ground and giving each vehicle a magnet. The result is a system with multiple uses, placing it within the realm of affordability.
Published Cryo-imaging lifts the lid on fuel cell catalyst layers



Thanks to a novel combination of cryogenic transmission electron tomography and deep learning, EPFL researchers have provided a first look at the nanostructure of platinum catalyst layers, revealing how they could be optimized for fuel cell efficiency.
Published Researchers reveal a map to study novel form of cell-to-cell communication



An international team of researchers lays the foundation to examine how extracellular RNA and its carrier proteins found in bodily fluids function in a healthy as well as a diseased setting, potentially providing a means to accurately implement early detection and monitor disease processes.
Published Synthetic biology meets fashion in engineered silk



Engineers developed a method to create synthetic spider silk at high yields while retaining strength and toughness using mussel foot proteins.
Published Reinforcement learning: From board games to protein design



An AI strategy proven adept at board games like Chess and Go, reinforcement learning, has now been adapted for a powerful protein design program. The results show that reinforcement learning can do more than master board games. When trained to solve long-standing puzzles in protein science, the software excelled at creating useful molecules. In one experiment, proteins made with the new approach were found to be more effective at generating useful antibodies in mice than were previous methods. If this method is applied to the right research problems, it likely could accelerate progress in a variety of scientific fields.
Published AI system can generate novel proteins that meet structural design targets



A new machine-learning system can generate protein designs with certain structural features, and which do not exist in nature. These proteins could be utilized to make materials that have similar mechanical properties to existing materials, like polymers, but which would have a much smaller carbon footprint.
Published Engineering the next generation of cell and gene therapies



Investigators are developing a novel way to treat amyotrophic lateral sclerosis (ALS) and retinitis pigmentosa using engineered stem cells that may eventually lead to personalized treatments.
Published Simple addition to corn bran could boost grain's nutritional value 15-35%



What if, by adding a couple of cell layers inside a corn kernel, the grain could become significantly richer in essential nutrients like iron, zinc, and protein? Such an improvement could benefit people who rely on corn for a large portion of their diet, as in many parts of the global south.
Published Study links 'stuck' stem cells to hair turning gray



Certain stem cells have a unique ability to move between growth compartments in hair follicles, but get stuck as people age and so lose their ability to mature and maintain hair color, a new study shows.
Published Loops, flags and tension in DNA



Two protein complexes carry the major responsibility for the spatial organization of chromosomes in our cell nuclei. DNA tension plays a surprising role in this. Nanoscientists now publish how they have visualized this.
Published New mechanism for DNA folding



A hitherto unknown mechanism for DNA folding is described in a new study. The findings provide new insights into chromosomal processes that are vital to both normal development and to prevent disease.
Published Novel nanocages for delivery of small interfering RNAs



Small interfering RNAs (siRNAs) are novel therapeutics that can be used to treat a wide range of diseases. This has led to a growing demand for selective, efficient, and safe ways of delivering siRNA in cells. Now, in a cooperation between the Universities of Amsterdam and Leiden, researchers have developed dedicated molecular nanocages for siRNA delivery. In a paper just out in the Journal Chem they present nanocages that are easy to prepare and display tuneable siRNA delivery characteristics.
Published A team creates 'quantum composites' for various electrical and optical innovations



A team has shown in the laboratory the unique and practical function of newly created materials, which they called quantum composites, that may advance electrical, optical, and computer technologies.
Published Tiny biobattery with 100-year shelf life runs on bacteria



A tiny biobattery that could still work after 100 years has been developed.
Published Next decade decisive for PV growth on the path to 2050



Global experts on solar power strongly urge a commitment to the continued growth of photovoltaic (PV) manufacturing and deployment to power the planet, arguing that lowballing projections for PV growth while waiting for a consensus on other energy pathways or the emergence of technological last-minute miracles 'is no longer an option.'
Published SpyLigation uses light to switch on proteins



Scientists can now use light to activate protein functions both inside and outside of living cells. The new method, called light-activated SpyLigation, can turn on proteins that are normally off to allow researchers to study and control them in more detail. This technology has potential uses in tissue engineering, regenerative medicine, and understanding how the body works. The scientists applied their new method to control the glow of a green fluorescent protein derived from Japanese eel muscle.
Published How electricity can heal wounds three times as fast



Chronic wounds are a major health problem for diabetic patients and the elderly -- in extreme cases they can even lead to amputation. Using electric stimulation, researchers have developed a method that speeds up the healing process, making wounds heal three times faster.