Showing 20 articles starting at article 521

< Previous 20 articles        Next 20 articles >

Categories: Biology: Molecular, Energy: Technology

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Gut bacteria can process dietary fiber into an anti-allergy weapon      (via sciencedaily.com)     Original source 

Short-chain fatty acids (SCFAs), which are produced by gut bacteria from dietary fiber, regulate our immune system, but the mechanism of their action remains unknown. In a recent study, researchers investigated how SCFAs interact with mast cells, a type of white blood cell that plays a central role in allergic reactions. Their findings and insights could lead to innovative and effective anti-allergy medications, supplements, and diets, paving the way for healthier lives.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Shining a new light on the tug-of-war between virus and host      (via sciencedaily.com)     Original source 

The interplay between ribonucleic acid (RNA) and proteins is not only important for maintaining cellular homeostasis but is also at the center of the tug-of-war between virus and host. Until now, there has been no method to globally map direct interactions of individual RNA regions in an unbiased fashion without the need for genetic modification of the target RNA or cell. Researchers have now developed a breakthrough tool that overcomes this limitation.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Environmental: General Geoscience: Geochemistry
Published

How seahorse-like toxins kill insects      (via sciencedaily.com)     Original source 

Insect-killing bacteria typically release toxins to slay their hosts. The bacterium Photorhabdus luminescens, for example, pumps insect larvae full of the lethal 'Makes caterpillars floppy 1' (Mcf1) toxin, leading them to first become droopy and then dead. However, it has so far been a mystery how Mcf1 unfolds its devastating effect. Researchers successfully used cryo-electron microscopy (cryo-EM) and biochemical assays to characterize the first-ever Mcf1 structure, allowing them to propose a molecular mechanism of the toxin's action. Understanding how bacterial toxins perform their deadly task in such detail is very useful for engineering novel biopesticides, thereby reducing the use of barely specific chemical agents with harmful side effects for the ecosystem.

Chemistry: General Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Decarbonizing the world's industries      (via sciencedaily.com)     Original source 

Harmful emissions from the industrial sector could be reduced by up to 85% across the world, according to new research. The sector, which includes iron and steel, chemicals, cement, and food and drink, emits around a quarter of global greenhouse gas (GHG) emissions -- planet-warming gases that result in climate change and extreme weather.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Using computers to design proteins allows researchers to make tunable hydrogels that can form both inside and outside of cells      (via sciencedaily.com)     Original source 

New research demonstrates a new class of hydrogels that can form not just outside cells, but also inside of them. These hydrogels exhibited similar mechanical properties both inside and outside of cells, providing researchers with a new tool to group proteins together inside of cells.

Energy: Technology Engineering: Robotics Research
Published

Artificial muscles -- lighter, safer, more robust      (via sciencedaily.com)     Original source 

Researchers have developed artificial muscles that are lighter, safer and more robust than their predecessors. The newly developed actuators have a novel type of shell structure and use a high-permittivity ferroelectric material that can store relatively large amounts of electrical energy. They therefore work with relatively low electrical voltage, are waterproof, more robust and safer to touch.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species Ecology: Invasive Species Ecology: Nature Ecology: Trees Environmental: General
Published

Asparagus and orchids are more similar than you think      (via sciencedaily.com)     Original source 

How is a beech leaf constructed? What determines the appearance of an asparagus? A new 'encyclopaedia' helps us learn more about the building blocks of plants. The encyclopaedia, probably the largest of its kind, could be used to improve targeted plant breeding efforts, to make them both more climate-resilient and more easily digestible.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

'Genomic time machine' reveals secrets of our DNA      (via sciencedaily.com)     Original source 

Researchers reveal a novel method to uncover bits of our genetic blueprint that come from ancient genetic parasites, offering fresh insights into human evolution and health.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Biology: Zoology
Published

A non-allergenic wheat protein for growing better cultivated meat      (via sciencedaily.com)     Original source 

As the world's population increases, cultivated or lab-grown meat -- animal muscle and fat cells grown in laboratory conditions -- has emerged as a potential way to satisfy future protein needs. And edible, inexpensive plant proteins could be used to grow these cell cultures. Now, researchers report that the non-allergenic wheat protein glutenin successfully grew striated muscle layers and flat fat layers, which could be combined to produce meat-like textures.

Energy: Batteries Energy: Technology Physics: Acoustics and Ultrasound
Published

Sound-powered sensors stand to save millions of batteries      (via sciencedaily.com)     Original source 

Researchers are developing a new type of sensor that reacts to certain sound waves, causing it to vibrate. The sensor is a metamaterial that acquires its special properties through the structuring of the material. Passive sound-sensitive sensors could be used to monitor buildings, earthquakes or certain medical devices and save millions of batteries.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular
Published

How obesity dismantles our mitochondria      (via sciencedaily.com)     Original source 

Researchers found that when mice were fed a high-fat diet, mitochondria within their fat cells broke apart and were less able to burn fat, leading to weight gain. They also found they could reverse the effect by targeting a single gene, suggesting a new treatment strategy for obesity.

Biology: Biochemistry Biology: Cell Biology Chemistry: Biochemistry Chemistry: Thermodynamics Energy: Technology Engineering: Nanotechnology
Published

Locusts' sense of smell boosted with custom-made nanoparticles      (via sciencedaily.com)     Original source 

Scientists have harnessed the power of specially made nanostructures to enhance the neural response in a locust's brain to specific odors and to improve their identification of those odors.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Ecology: Trees
Published

Soap bark discovery offers a sustainability booster for the global vaccine market      (via sciencedaily.com)     Original source 

A valuable molecule sourced from the soapbark tree and used as a key ingredient in vaccines, has been replicated in an alternative plant host for the first time, opening unprecedented opportunities for the vaccine industry.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology
Published

How to shift gears in a molecular motor      (via sciencedaily.com)     Original source 

Scientists have long strived to develop artificial molecular motors that can convert energy into directed motion. Researchers have now presented a solution to a challenging problem: how motion can be transferred in a controlled manner from one place to another through a 'molecular gear'. Molecular motors have the potential for use in, for example, energy storage applications and medicine.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How HIV smuggles its genetic material into the cell nucleus      (via sciencedaily.com)     Original source 

Around one million individuals worldwide become infected with HIV, the virus that causes AIDS, each year. To replicate and spread the infection, the virus must smuggle its genetic material into the cell nucleus and integrate it into a chromosome. Research teams have now discovered that its capsid has evolved into a molecular transporter. As such, it can directly breach a crucial barrier, which normally protects the cell nucleus against viral invaders. This way of smuggling keeps the viral genome invisible to anti-viral sensors in the cytoplasm.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Energy: Batteries Energy: Technology
Published

Polymer power: Researchers enhance the safety of lithium batteries      (via sciencedaily.com)     Original source 

Lithium-ion batteries face safety concerns as a result of internal separator issues which often lead to short circuits. Scientists have now developed a method to improve the stability and properties of separators with a layer of silicon dioxide and other functional molecules. Batteries employing these separators demonstrated improved performance and reduced growth of disruptive root-like structures, paving the way for high-safety batteries that can aid the adoption of electric vehicles and advanced energy storage systems.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How macrophages regulate regenerative healing in spiny mice      (via sciencedaily.com)     Original source 

A team of researchers is delving deeper into the science behind how spiny mice can regenerate lost tissue and using what they learn to trigger regeneration in other types of mice -- advances which one day may be translated into humans. Whereas adult laboratory mice heal injuries with scar tissue, spiny mice have the unique ability to regrow lost skin and regenerate musculoskeletal tissues in their body.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Offbeat: General Offbeat: Plants and Animals
Published

Cellular scaffolding rewired to make microscopic railways      (via sciencedaily.com)     Original source 

Researchers were able to control the growth of thin, branching networks that support cellular structure and help cells function. The networks, called microtubules, can exert force and precisely transport chemicals at a subcellular level.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Geoscience: Environmental Issues Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

The underground network: Decoding the dynamics of plant-fungal symbiosis      (via sciencedaily.com)     Original source 

The intricate dance of nature often unfolds in mysterious ways, hidden from the naked eye. At the heart of this enigmatic tango lies a vital partnership: the symbiosis between plants and a type of fungi known as arbuscular mycorrhizal (AM) fungi. New groundbreaking research delves into this partnership, revealing key insights that deepen our understanding of plant-AM fungi interactions and could lead to advances in sustainable agriculture.