Showing 20 articles starting at article 801
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular, Energy: Technology
Published Proteins roll the dice to determine bee sex



To date it has been unclear exactly how the sex of a bee is determined. A research team comprising biologists and chemists has now identified a key gene and the molecular mechanism linked with it. They describe how this process is similar to a game involving two dice.
Published Avatars to help tailor glioblastoma therapies



Scientists have created a new zebrafish xenograft platform to screen for novel treatments for an aggressive brain tumor called glioblastoma, according to a new study.
Published Honeybees are more selective in their choices for nutrition than previously thought



An international research group examined which plants honeybees favor when collecting nectar and pollen. The choices honeybees make have an impact on their health and also on humans, as honeybees pollinate important crop plants.
Published Insect cyborgs: Towards precision movement



Insect cyborgs may sound like something straight out of the movies, but hybrid insect computer robots, as they are scientifically called, could pioneer a new future for robotics. It involves using electrical stimuli to control an insect’s movement. Now, an international research group has conducted a study on the relationship between electrical stimulation in stick insects' leg muscles and the resulting torque (the twisting force that causes the leg to move).
Published Disaster-proofing sustainable neighborhoods requires thorough long-term planning



Engineers and scientists look at how thoughtful design can reduce a sustainably-designed neighborhood’s energy vulnerability during power disruptions, as well as which design characteristics are needed if and when local populations need to move to shelters. Researchers analyzed the design and energy characteristics of particular kinds of buildings and neighborhoods to assess their vulnerabilities and their access to alternative and renewable energy sources. The authors use several scenarios involving different lengths of power disruption to see which kind of response is most beneficial to the populations affected.
Published Metal-loving microbes could replace chemical processing of rare earths



Scientists have characterized the genome of a metal-loving bacteria with an affinity for rare earth elements. The research paves the way towards replacing the harsh chemical processing of these elements with a benign practice called biosorption.
Published How new plant cell walls change their mechanical properties after cell division



Scientists reveal new plant cell walls can have significantly different mechanical properties compared to surrounding parental cell walls, enabling cells to change their local shape and influence the growth of plant organs.
Published Preventing spread of parasitic DNA in our genomes



Researchers have identified a new enzyme called PUCH, which plays a key role in preventing the spread of parasitic DNA in our genomes. These findings may reveal new insights into how our bodies detect and fight bacteria and viruses to prevent infections.
Published Water makes all the difference



Water is a major driving force in the formation of separate reaction compartments within cells.
Published A hygiene program for chromosomes



Researchers identified and characterized a new cellular compartment in vertebrate cells that might be a precursor of today's eucaryotic nucleus. The study reveals that mammalian cells recognize, cluster, sort and keep extrachromosomal DNA -- like transfected plasmid DNA and endogenous circular DNAs originating from telomeres of the chromosome -- away from chromosomal DNA. That suggests that there is a cell autonomous genome defense system.
Published Researchers studied thousands of fertility attempts hoping to improve IVF



By genetically testing nearly one thousand embryos, scientists have provided the most detailed analysis of embryo fate following human in vitro fertilization.
Published Edges cause cilia to quickly synchronize their beating pattern



Border regions can cause cilia to coordinate their motion creating a unidirectional wave that is essential for biological functions. Scientists proposed a new model describing this synchronized pattern driven by the border region.
Published Small but mighty new gene editor



A new CRISPR-based gene-editing tool has been developed which could lead to better treatments for patients with genetic disorders. The tool is an enzyme, AsCas12f, which has been modified to offer the same effectiveness but at one-third the size of the Cas9 enzyme commonly used for gene editing. The compact size means that more of it can be packed into carrier viruses and delivered into living cells, making it more efficient.
Published A lethal parasite's secret weapon: Infecting non-immune cells



The organisms that cause visceral leishmaniasis, a potentially deadly version of the parasitic disease that most often affects the skin to cause disfiguring disease, appear to have a secret weapon, new research suggests: They can infect non-immune cells and persist in those uncommon environments.
Published An advance in cryo-EM could be a significant boon for research on potential cancer therapies



A technology called cryo-electron microscopy enables scientists to see the atomic structure of biological molecules in high resolution. But to date, it has been ineffective for imaging small molecules. A team of biochemists devised a solution that makes it possible to hold small protein molecules in place while they're being imaged, which will enable cryo-EM to produce much clearer images of such molecules. The advance is significant because small and medium-sized protein molecules are an area of focus in research on potential new drugs for cancer and other diseases.
Published Researchers dynamically tune friction in graphene



The friction on a graphene surface can be dynamically tuned using external electric fields, according to researchers.
Published Capturing CO2 with electricity: A microbial enzyme inspires electrochemistry



Humanity continuously emits greenhouse gases and thereby worsens global warming. Increasing research efforts go into developing strategies to convert these gases, such as carbon dioxide (CO2), into valuable products. CO2 accumulates dramatically over the years and is chemically very stable, thus challenging to transform. Yet, for billions of years, some microbes have actively captured CO2 using highly efficient enzymes. Scientists have now isolated one of these enzymes. When the enzyme was electronically branched on an electrode, they observed the conversion of CO2 to formate with perfect efficiency. This phenomenon will inspire new CO2-fixation systems because of its remarkable directionality and rates.
Published A new twist on rechargeable battery performance



Rechargeable battery performance could be improved by a new understanding of how they work at the molecular level. Researchers upend what's known about how rechargeable batteries function.
Published New information on the most important early stage of embryonic development



A new discovery by researchers challenges our current understanding of gastrulation, the most important stage of early embryonic development.
Published Tiny CRISPR tool could help shred viruses



Scientists mapped out the three-dimensional structure of one of the smallest known CRISPR-Cas13 systems then used that knowledge to modify its structure and improve its accuracy.