Showing 20 articles starting at article 221
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular, Engineering: Graphene
Published Giant viruses infect deadly parasite



The single-celled organism Naegleria fowleri ranks among the deadliest human parasites. Researchers have now discovered viruses that infect this harmful microbe. Named Naegleriavirus, these belong to the giant viruses, a group known for their unusually large particles and complex genomes.
Published Researchers unveil PI3K enzyme's dual accelerator and brake mechanisms



The enzyme PI3K plays a critical role in cell migration. Scientists have long understood this function. But researchers have recently unveiled that a subunit of this enzyme also has the ability to slam on the breaks to this process.
Published Condensed matter physics: Novel one-dimensional superconductor



In a significant development in the field of superconductivity, researchers have successfully achieved robust superconductivity in high magnetic fields using a newly created one-dimensional (1D) system. This breakthrough offers a promising pathway to achieving superconductivity in the quantum Hall regime, a longstanding challenge in condensed matter physics.
Published Researchers create artificial cells that act like living cells



Researchers describe the steps they took to manipulate DNA and proteins -- essential building blocks of life -- to create cells that look and act like cells from the body. This accomplishment, a first in the field, has implications for efforts in regenerative medicine, drug delivery systems and diagnostic tools.
Published AI tool creates 'synthetic' images of cells for enhanced microscopy analysis



Researchers have developed a method to use an image generation AI model to create realistic images of single cells, which are then used as 'synthetic data' to train an AI model to better carry out single-cell segmentation.
Published Liquid droplets shape how cells respond to change



New research has shown that cells regulate cAMP/PKA signaling by forming liquid droplets that segregate excess PKA catalytic subunits where they can do no harm. Some cancers may block the formation of liquid droplets, leading to hyperactive signaling and tumor formation.
Published AI can improve Alzheimer's treatment through the 'gut-brain axis'



Researchers are using artificial intelligence to uncover the link between the gut microbiome and Alzheimer's disease. Previous studies showed that Alzheimer's disease patients have changes in their gut bacteria as the disease develops. The study outlines a computational method to determine how bacterial byproducts called metabolites interact with receptors on cells and contribute to Alzheimer's disease.
Published Scientists discover the cellular functions of a family of proteins integral to inflammatory diseases



In a scientific breakthrough, researchers have revealed the biological mechanisms by which a family of proteins known as histone deacetylases (HDACs) activate immune system cells linked to inflammatory bowel disease (IBD) and other inflammatory diseases.
Published Protein network dynamics during cell division



An international team has mapped the movement of proteins encoded by the yeast genome throughout its cell cycle. This is the first time that all the proteins of an organism have been tracked across the cell cycle, which required a combination of deep learning and high-throughput microscopy.
Published The enemy within: How pathogens spread unrecognized in the body



Some pathogens hide inside human cells to enhance their survival. Researchers have uncovered a unique tactic certain bacteria use to spread in the body without being detected by the immune system. In their study, they reveal the crucial role of a bacterial nanomachine in this infection process.
Published Magnetic with a pinch of hydrogen



Magnetic two-dimensional materials consisting of one or a few atomic layers have only recently become known and promise interesting applications, for example for the electronics of the future. So far, however, it has not been possible to control the magnetic states of these materials well enough. A research team is now presenting an innovative idea that could overcome this shortcoming -- by allowing the 2D layer to react with hydrogen.
Published Breakthrough rice bran nanoparticles show promise as affordable and targeted anticancer agent



Plant-derived nanoparticles have demonstrated significant anticancer effects. Researchers recently developed rice bran-derived nanoparticles (rbNPs) that efficiently suppressed cell proliferation and induced programmed cell death of only cancer cells. Furthermore, rbNPs successfully suppressed the growth of tumors in mice having aggressive adenocarcinoma in their peritoneal cavity, without any adverse effects. Given their low production costs and high efficacy, rbNPs hold great promise for developing affordable and safe anticancer agents.
Published More economical and sustainable rechargeable batteries



Lithium salts make batteries powerful but expensive. An ultralow-concentration electrolyte based on the lithium salt LiDFOB may be a more economical and more sustainable alternative. Cells using these electrolytes and conventional electrodes have been demonstrated to have high performance. In addition, the electrolyte could facilitate both production and recycling of the batteries.
Published Key protein regulates immune response to viruses in mammal cells



Researchers have revealed the regulatory mechanism of a specific protein, TRBP, that plays a key role in balancing the immune response triggered by viral infections in mammal cells. These findings could help drive the development of antiviral therapies and nucleic acid medicines to treat genetic disorders.
Published Development of organic semiconductors featuring ultrafast electrons



Collaboration has led to the successful observation of these ultrafast electrons within conducting two-dimensional polymers.
Published Light show in living cells



Observing proteins precisely within cells is extremely important for many branches of research but has been a significant technical challenge -- especially in living cells, as the required fluorescent labeling had to be individually attached to each protein. The research group has now overcome this hurdle: With a method called 'vpCells,' it is possible to label many proteins simultaneously, using five different fluorescent colors.
Published Why can zebrafish regenerate damaged heart tissue, while other fish species cannot?



A heart attack will leave a permanent scar on a human heart, yet other animals, including zebrafish, can clear cardiac scar tissue and regrow damaged muscle as adults. Biologists sheds new light on how zebrafish heal heart tissue by comparing how this species responds to heart injury with medaka, a fish species that cannot regenerate cardiac tissue.
Published RNA's hidden potential: New study unveils its role in early life and future bioengineering



The origin of life continues to remain a matter of debate. The ribonucleic acid (RNA) world hypothesis proposes that 'ribozymes' which store genetic information and possess catalytic functions may have supported the activities of early life forms. Now, researchers explore how RNA elongation is regulated allosterically, shedding light on its impact on early life processes and offering insights into the fabrication of arbitrary RNA nanostructures with various modern applications.
Published Atom-by-atom: Imaging structural transformations in 2D materials



Silicon-based electronics are approaching their physical limitations and new materials are needed to keep up with current technological demands. Two-dimensional (2D) materials have a rich array of properties, including superconductivity and magnetism, and are promising candidates for use in electronic systems, such as transistors. However, precisely controlling the properties of these materials is extraordinarily difficult.
Published Solving a mini mystery of cell division



Trying to hit a target size before dividing seems like the best strategy for maintaining a precise cell size, but bacteria don't do that. Now we know why.