Showing 20 articles starting at article 121
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular, Engineering: Robotics Research
Published Researchers thwart resistant bacteria's strategy



Bacteria are experts at evolving resistance to antibiotics. One resistance strategy is to cover their cell walls in sticky and gooey biofilm that antibiotics cannot penetrate. A new discovery could put a stop to this strategy.
Published Nanorobot with hidden weapon kills cancer cells



Researchers have developed nanorobots that kill cancer cells in mice. The robot's weapon is hidden in a nanostructure and is exposed only in the tumour microenvironment, sparing healthy cells.
Published The future of metals research with artificial intelligence



A research team has developed an optimal artificial intelligence model to predict the yield strength of various metals, effectively addressing traditional cost and time limitations.
Published Light-controlled artificial maple seeds could monitor the environment even in hard-to-reach locations



Researchers have developed a tiny robot replicating the aerial dance of falling maple seeds. In the future, this robot could be used for real-time environmental monitoring or delivery of small samples even in inaccessible terrain such as deserts, mountains or cliffs, or the open sea. This technology could be a game changer for fields such as search-and-rescue, endangered species studies, or infrastructure monitoring.
Published New deep-learning model outperforms Google AI system in predicting peptide structures



Researchers have developed a deep-learning model, called PepFlow, that can predict all possible shapes of peptides -- chains of amino acids that are shorter than proteins, but perform similar biological functions. Peptides are known to be highly flexible, taking on a wide range of folding patterns, and are thus involved in many biological processes of interest to researchers in the development of therapeutics.
Published A promising weapon against measles



What happens when measles virus meets a human cell? The viral machinery unfolds in just the right way to reveal key pieces that let it fuse itself into the host cell membrane.
Published Potent therapy candidate for fatal prion diseases



Scientists have developed a gene-silencing tool that shows promise as a therapy against fatal prion diseases. The tool, a streamlined epigenetic editor, paves the way for a new class of genetic approaches to treat certain diseases.
Published New, holistic way to teach synthetic biology



Synthetic biology combines principles from science, engineering and social science, creating emerging technologies such as alternative meats and mRNA vaccines; Deconstructing synthetic biology across scales gives rise to new approach to uniting traditional disciplines; Case studies offer a modular, accessible approach to teaching at different institutions.
Published From takeoff to flight, the wiring of a fly's nervous system is mapped



Although a fly's motor neurons are few, it performs remarkable aerial and terrestrial feats. A wiring diagram recently created of the motor circuits in the central nervous system of the fruit fly is providing detailed information on how the nerve coordination of leg movements differs from that controlling the wings. Such studies reveal the unexpected complexity of the fly's tiny motor system. They also advance the understanding of how the central nervous system in animals coordinates individual muscles to carry out a variety of behaviors.
Published Cell division: Before commitment, a very long engagement



Before a cell commits fully to the process of dividing itself into two new cells, it may ensure the appropriateness of its commitment by staying for many hours -- sometimes more than a day -- in a reversible intermediate state, according to a new discovery. Their revelation of this fundamental feature of biology includes details of its mechanisms and dynamics, which may inform the development of future therapies targeting cancers and other diseases.
Published Unlocking the world of bacteria



Bacteria possess unique traits with great potential for benefiting society. However, current genetic engineering methods to harness these advantages are limited to a small fraction of bacterial species. A team has now introduced a novel approach that can make many more bacteria amenable to genetic engineering. Their method, called IMPRINT, uses cell-free systems to enhance DNA transformation across various bacterial strains.
Published The on-and-off affair in DNA



Researchers have discovered that in thale cresses histone H3 lysine-9 (H3K9) methylation, conventionally thought to be a mark of turning off gene transcription, can also turn on gene expression via the interactions of two other proteins and histone marks. The molecular mechanisms demonstrate that rather than functioning as a simple 'off switch,' H3K9 methylation is more like a 'dimmer switch' that fine-tunes DNA transcription. The discovery suggests there might be similar mechanisms in other organisms, too.
Published Slipping a note to a neighbor: The cellular way



Study reveals how drug molecules bind in channels between neighboring cells, changing intercellular communication.
Published Revealing the dynamic choreography inside multilayer vesicles



Our cells and the machinery inside them are engaged in a constant dance. This dance involves some surprisingly complicated choreography within the lipid bilayers that comprise cell membranes and vesicles -- structures that transport waste or food within cells. In a recent paper, researchers shed some light on how these vesicles self-assemble, knowledge that could help scientists design bio-inspired vesicles for drug-delivery or inspire them to create life-like synthetic materials.
Published Zebrafish reveal how bioelectricity shapes muscle development



New research describes how nerve cells and muscle cells communicate through electrical signals during development -- a phenomenon known as bioelectricity. The communication, which takes place via specialized channels between cells, is vital for proper development and behavior. The study identifies specific genes that control the process, and pins down what happens when it goes wrong. The finding offers clues to the genetic origins of muscle disorders in humans.
Published Discovery of vast sex differences in cellular activity has major implications for disease treatment



The study reveals vast differences in gene activity within the mitochondria of males compared to females. This is the first study to test effects of all 37 genes in the mitochondrial genome -- genes that copepods and humans share. The study found that males demonstrate more activity across all protein-coding mitochondrial genes than females. Although the study looks at tiny marine organisms called copepods, the findings have weighty implications for human medicine.
Published Robots face the future



Researchers have found a way to bind engineered skin tissue to the complex forms of humanoid robots. This brings with it potential benefits to robotic platforms such as increased mobility, self-healing abilities, embedded sensing capabilities and an increasingly lifelike appearance. Taking inspiration from human skin ligaments, the team included special perforations in a robot face, which helped a layer of skin take hold.
Published Meet CARMEN, a robot that helps people with mild cognitive impairment



Meet CARMEN, short for Cognitively Assistive Robot for Motivation and Neurorehabilitation -- a small, tabletop robot designed to help people with mild cognitive impairment (MCI) learn skills to improve memory, attention, and executive functioning at home.
Published Myths about intermittent fasting, debunked



Research shows that the increasingly popular weight-loss strategy is safe. Intermittent fasting has become an increasingly popular way to lose weight without counting calories. And a large body of research has shown it s safe. Still, several myths about fasting have gained traction.
Published Removal of excess chloride ions by plants when subjected to salt stress



Researchers have discovered a salt adaptation mechanism in plants that facilitates chloride removal from the roots and enhancing salinity tolerance. A research team has uncovered a novel mechanism of plant adaptation to salt stress involving the NaCl-induced translocation of a specific chloride channel protein, AtCLCf.