Showing 20 articles starting at article 321
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular, Engineering: Nanotechnology
Published RNA's hidden potential: New study unveils its role in early life and future bioengineering



The origin of life continues to remain a matter of debate. The ribonucleic acid (RNA) world hypothesis proposes that 'ribozymes' which store genetic information and possess catalytic functions may have supported the activities of early life forms. Now, researchers explore how RNA elongation is regulated allosterically, shedding light on its impact on early life processes and offering insights into the fabrication of arbitrary RNA nanostructures with various modern applications.
Published Atom-by-atom: Imaging structural transformations in 2D materials



Silicon-based electronics are approaching their physical limitations and new materials are needed to keep up with current technological demands. Two-dimensional (2D) materials have a rich array of properties, including superconductivity and magnetism, and are promising candidates for use in electronic systems, such as transistors. However, precisely controlling the properties of these materials is extraordinarily difficult.
Published Solving a mini mystery of cell division



Trying to hit a target size before dividing seems like the best strategy for maintaining a precise cell size, but bacteria don't do that. Now we know why.
Published Plant sensors could act as an early warning system for farmers



Using a pair of sensors made from carbon nanotubes, researchers discovered signals that help plants respond to stresses such as heat, light, or attack from insects or bacteria. Farmers could use these sensors to monitor threats to their crops, allowing them to intervene before the crops are lost.
Published Tracking a protein's fleeting shape changes



Researchers have developed a powerful, new technique to generate 'movies' of changing protein structures and speeds of up to 50 frames per second.
Published Two-dimensional nanomaterial sets record for expert-defying, counter-intuitive expansion



Engineers have developed a record-setting nanomaterial which when stretched in one direction, expands perpendicular to the applied force.
Published Researchers uncover human DNA repair by nuclear metamorphosis



Researchers have discovered a DNA repair mechanism that advances understanding of how human cells stay healthy, and which could lead to new treatments for cancer and premature aging.
Published 'Nanostitches' enable lighter and tougher composite materials



In an approach they call 'nanostitching,' engineers used carbon nanotubes to prevent cracking in multilayered composites. The advance could lead to next-generation airplanes and spacecraft.
Published Trash to treasure -- researchers turn metal waste into catalyst for hydrogen



Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that could make hydrogen production more sustainable.
Published Cooler transformers could help electric grid



Simulations on the Stampede2 supercomputer of the Texas Advanced Computing Center (TACC) are helping scientists engineer solutions to overheating of grid transformers -- a critical component of the electric grid.
Published A single atom layer of gold: Researchers create goldene



For the first time, scientists have managed to create sheets of gold only a single atom layer thick. The material has been termed goldene. According to researchers, this has given the gold new properties that can make it suitable for use in applications such as carbon dioxide conversion, hydrogen production, and production of value-added chemicals.
Published Quantum electronics: Charge travels like light in bilayer graphene



An international research team has demonstrated experimentally that electrons in naturally occurring double-layer graphene move like particles without any mass, in the same way that light travels. Furthermore, they have shown that the current can be 'switched' on and off, which has potential for developing tiny, energy-efficient transistors -- like the light switch in your house but at a nanoscale.
Published How blue-green algae manipulate microorganisms



A research team discovers previously unknown gene that indirectly promotes photosynthesis Protein regulator NirP1 influences the coordination of the nitrogen and carbohydrate metabolism 'Such protein regulators could in future be deployed in 'green' and 'blue' biotechnology for targeted control of the metabolism,' says geneticist.
Published Unlocking the 'chain of worms'



An international team of scientists has published a single-cell atlas for Pristina leidyi (Pristina), the water nymph worm, a segmented annelid with extraordinary regenerative abilities that has fascinated biologists for more than a century.
Published Starving cells hijack protein transport stations



Study details how nutrient-starved cells divert protein transport stations to cellular recycling centers to be broken down, highlighting a novel approach cells use to deal with stressful conditions.
Published Cell's 'garbage disposal' may have another role: Helping neurons near skin sense the environment



The typical job of the proteasome, the garbage disposal of the cell, is to grind down proteins into smaller bits and recycle some of those bits and parts. That's still the case, for the most part, but researchers, studying nerve cells grown in the lab and mice, say that the proteasome's role may go well beyond that.
Published How seaweed became multicellular



A deep dive into macroalgae genetics has uncovered the genetic underpinnings that enabled macroalgae, or 'seaweed,' to evolve multicellularity. Three lineages of macroalgae developed multicellularity independently and during very different time periods by acquiring genes that enable cell adhesion, extracellular matrix formation, and cell differentiation, researchers report. Surprisingly, many of these multicellular-enabling genes had viral origins. The study, which increased the total number of sequenced macroalgal genomes from 14 to 124, is the first to investigate macroalgal evolution through the lens of genomics.
Published Microbial food as a strategy food production of the future



Scientists have summarized microbial food production strategies.
Published Decoding the language of cells: Unveiling the proteins behind cellular organelle communication



A collaboration unveils a novel strategy for identifying key proteins in organelle communication. This approach advances our ability to pinpoint proteins essential for organelle interactions within specific spatial and temporal contexts.
Published Innovative antiviral defense with new CRISPR tool



The rise of RNA viruses like SARS-CoV-2 highlights the need for new ways to fight them. RNA-targeting tools like CRISPR/Cas13 are powerful but inefficient in the cytoplasm of cells, where many RNA viruses replicate. Scientists have devised a solution: Cas13d-NCS. This new molecular tool allows CRISPR RNA molecules that are located within the nucleus of a cell to move to the cytoplasm, making it highly effective at neutralizing RNA viruses. This advancement opens doors for precision medicine and proactive viral defense strategies.