Showing 20 articles starting at article 501
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular, Physics: Quantum Computing
Published How does HIV get into the cell's cenetr to kickstart infection?



UNSW Sydney medical scientists have cracked a mystery whose solution has long eluded researchers. UNSW Sydney medical scientists have cracked a mystery whose solution has long eluded researchers.
Published Shining a light on the hidden properties of quantum materials



Certain materials have desirable properties that are hidden and scientists can use light to uncover these properties. Researchers have used an advanced optical technique, based on terahertz time-domain spectroscopy, to learn more about a quantum material called Ta2NiSe5 (TNS).
Published Researchers add a 'twist' to classical material design



Researchers grew a twisted multilayer crystal structure for the first time and measured the structure's key properties. The twisted structure could help researchers develop next-generation materials for solar cells, quantum computers, lasers and other devices.
Published What coffee with cream can teach us about quantum physics



A new advancement in theoretical physics could, one day, help engineers develop new kinds of computer chips that might store information for longer in very small objects.
Published Research of water droplet interfaces that offer the secret ingredient for building life



Scientists have experimental evidence that the key step in protein formation can occur in droplets of pure water.
Published New tool reveals gene behavior in bacteria



Researchers showed that the way in which genes are turned on and off as bacteria grow provide clues to their regulation.
Published New study unveils how plants control the production of reactive oxygen species



Reactive oxygen species (ROS), though generally regarded as toxic byproducts of biological processes, serve many important functions in plants. However, the precise mechanism that plants use to regulate the production of ROS remains elusive. In a recent study, researchers clarified how an important ROS-generating enzyme is activated, revealing mechanisms likely conserved across all land plants. Their findings could pave the way for breakthroughs in agricultural and environmental remediation tools.
Published Researchers find new multiphoton effect within quantum interference of light



An international team of researchers has disproved a previously held assumption about the impact of multiphoton components in interference effects of thermal fields (e.g. sunlight) and parametric single photons (generated in non-linear crystals).
Published Tiny worm, giant leap: Discovery of highly specific fatty acid attachment to proteins



In a world where the intricacies of molecular biology often seem as vast and mysterious as the cosmos, a new groundbreaking study delves into the microscopic universe of proteins, unveiling a fascinating aspect of their existence. This revelation could hold profound implications for the understanding and treatment of a myriad of human diseases.
Published Don't overeat: How archaea toggle the nitrogen-uptake switch



By tightly regulating nitrogen uptake, microorganisms avoid overeating nitrogen and thus wasting energy. Scientists now reveal how some methanogenic archaea manage to do so.
Published New research sheds light on a phenomenon known as 'false vacuum decay'



Scientists have produced the first experimental evidence of vacuum decay.
Published Single-celled kamikazes spearhead bacterial infection



You suddenly feel sick -- pathogenic bacteria have managed to colonize and spread in your body! The weapons they use for their invasion are harmful toxins that target the host's defense mechanisms and vital cell functions. Before these deadly toxins can attack host cells, bacteria must first export them from their production site -- the cytoplasm -- using dedicated secretion systems.
Published Towards the quantum of sound



A team of scientists has succeeded in cooling traveling sound waves in wave-guides considerably further than has previously been possible using laser light. This achievement represents a significant move towards the ultimate goal of reaching the quantum ground state of sound in wave-guides. Unwanted noise generated by the acoustic waves at room temperature can be eliminated. This experimental approach both provides a deeper understanding of the transition from classical to quantum phenomena of sound and is relevant to quantum communication systems and future quantum technologies.
Published DNA construction led to unexpected discovery of important cell function



Researchers have used DNA origami, the art of folding DNA into desired structures, to show how an important cell receptor can be activated in a previously unknown way. The result opens new avenues for understanding how the Notch signalling pathway works and how it is involved in several serious diseases.
Published New technique visualizes mechanical structure of the cell nucleus



The cell nucleus is considered to be the control center of vital cellular processes, but its material properties continue to puzzle scientists. An international research team has now developed a new technique that provides a previously unattainable view of the mechanical properties inside this control center. For the first time, it has been possible to visualize over time its peculiar dynamic structural features in living cells, which appear to be crucial for cell function.
Published Nearly dead plants brought back to life: Keys to aging hidden in the leaves



Scientists have known about a particular organelle in plant cells for over a century. However, scientists have only now discovered that organelle's key role in aging.
Published Chemists create a 2D heavy fermion



Researchers have synthesized the first 2D heavy fermion. The material, a layered intermetallic crystal composed of cerium, silicon, and iodine (CeSiI), has electrons that are 1000x heavier and is a new platform to explore quantum phenomena.
Published Higher measurement accuracy opens new window to the quantum world



A team has developed a new measurement method that, for the first time, accurately detects tiny temperature differences in the range of 100 microkelvin in the thermal Hall effect. Previously, these temperature differences could not be measured quantitatively due to thermal noise. Using the well-known terbium titanate as an example, the team demonstrated that the method delivers highly reliable results. The thermal Hall effect provides information about coherent multi-particle states in quantum materials, based on their interaction with lattice vibrations (phonons).
Published Study throws our understanding of gene regulation for a loop



To function properly, the genetic material is highly organized into loop structures that often bring together widely separated sections of the genome critical to the regulation of gene activity. Scientists now address how these loops can help repress or silence gene activity, with potentially far-reaching effects on human health.
Published Machine learning reveals sources of heterogeneity among cells in our bodies



A team of scientists discovered the secrets of cell variability in our bodies. The findings of this research are expected to have far-reaching effects, such as improvement in the efficacy of chemotherapy treatments, or set a new paradigm in the study of antibiotic-resistant bacteria.