Showing 20 articles starting at article 81

< Previous 20 articles        Next 20 articles >

Categories: Biology: Molecular, Physics: Optics

Return to the site home page

Biology: Biochemistry Biology: Cell Biology Biology: General Chemistry: Biochemistry Offbeat: Computers and Math Offbeat: General Offbeat: Plants and Animals Physics: Optics
Published

Super-black wood can improve telescopes, optical devices and consumer goods      (via sciencedaily.com)     Original source 

Thanks to an accidental discovery, researchers have created a new super-black material that absorbs almost all light, opening potential applications in fine jewelry, solar cells and precision optical devices.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

Researchers identify unique phenomenon in Kagome metal      (via sciencedaily.com)     Original source 

A new study focuses on how a particular Kagome metal interacts with light to generate what are known as plasmon polaritons -- nanoscale-level linked waves of electrons and electromagnetic fields in a material, typically caused by light or other electromagnetic waves.

Offbeat: General Offbeat: Space Physics: General Physics: Optics Physics: Quantum Physics Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features
Published

What no one has seen before -- simulation of gravitational waves from failing warp drive      (via sciencedaily.com)     Original source 

Physicists have been exploring the theoretical possibility of spaceships driven by compressing the four-dimensional spacetime for decades. Although this so-called 'warp drive' originates from the realm of science fiction, it is based on concrete descriptions in general relativity. A new study takes things a step further -- simulating the gravitational waves such a drive might emit if it broke down.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Precise genetics: New CRISPR method enables efficient DNA modification      (via sciencedaily.com)     Original source 

A research group has developed a new method that further improves the existing CRISPR/Cas technologies: it allows a more precise and seamless introduction of tags into proteins at the gene level. This technology could significantly improve research on proteins in living organisms and opens up new possibilities for medical research.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Offbeat: General Offbeat: Plants and Animals
Published

Platypus and chicken reveal how chromosomes balance between the sexes      (via sciencedaily.com)     Original source 

Geneticists uncover new insights into how sex chromosome systems work in the platypus and the chicken -- which will lead to better understandings of our own sex chromosome evolution and gene regulation.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Environmental: General Environmental: Water Geoscience: Environmental Issues Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

How researchers turn bacteria into cellulose-producing mini-factories      (via sciencedaily.com)     Original source 

Researchers have modified certain bacteria with UV light so that they produce more cellulose. The basis for this is a new approach with which the researchers generate thousands of bacterial variants and select those that have developed into the most productive.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

MicroRNA study sets stage for crop improvements      (via sciencedaily.com)     Original source 

MicroRNAs can make plants more capable of withstanding drought, salinity, pathogens and more. However, in a recent study scientists showed just how much we didn't know about the intricate processes plants use to produce them.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular
Published

Fetal brain impacted when mom fights severe flu: New mouse study explains how      (via sciencedaily.com)     Original source 

New research using live mouse-adapted influenza virus improves upon previous mouse experiments to explain how maternal infection impacts fetal brain development. The study also indicates fetal brain changes are more likely once the severity of the mother's infection meets a specific threshold.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Researchers decipher new molecular mechanisms related to biological tissue regeneration      (via sciencedaily.com)     Original source 

A study opens new perspectives to better understand how the molecular mechanisms involved in regenerative medicine work. The study focuses on tumor necrosis factor- (TNF- ) and its receptors TNFR, molecules of key interest in biomedicine due to their involvement in multiple diseases such as obesity related to type 2 diabetes mellitus, inflammatory bowel disease and several types of cancer.

Computer Science: Encryption Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Optical fibers fit for the age of quantum computing      (via sciencedaily.com)     Original source 

A new generation of specialty optical fibers has been developed by physicists to cope with the challenges of data transfer expected to arise in the future age of quantum computing.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Atomic 'GPS' elucidates movement during ultrafast material transitions      (via sciencedaily.com)     Original source 

Scientists have created the first-ever atomic movies showing how atoms rearrange locally within a quantum material as it transitions from an insulator to a metal. With the help of these movies, the researchers discovered a new material phase that settles a years-long scientific debate and could facilitate the design of new transitioning materials with commercial applications.

Chemistry: Biochemistry Chemistry: General Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Nuclear Energy: Technology Physics: General Physics: Optics
Published

Fresh light on the path to net zero      (via sciencedaily.com)     Original source 

Researchers have used magnetic fields to reveal the mystery of how light particles split. Scientists are closer to giving the next generation of solar cells a powerful boost by integrating a process that could make the technology more efficient by breaking particles of light photons into small chunks.

Physics: Optics
Published

Shining light on similar crystals reveals photoreactions can differ      (via sciencedaily.com)     Original source 

A research team has revealed that photoreactions proceed differently depending on the crystal structure of photoreactive molecules, shining a light on the mechanism by which non-uniform photoreactions occur within crystals. This is a new step toward controlling photoreactions in crystals.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Molecular Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals
Published

Lampreys possess a 'jaw-dropping' evolutionary origin      (via sciencedaily.com)     Original source 

Lampreys are one of only two living jawless vertebrates Jaws are formed by a key stem cell population called the neural crest New research reveals the gene regulatory changes that may explain morphological differences between jawed and jawless vertebrates.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

New drug shows promise in clearing HIV from brain      (via sciencedaily.com)     Original source 

An experimental drug originally developed to treat cancer may help clear HIV from infected cells in the brain, according to a new study. By targeting infected cells in the brain, drug may clear virus from hidden areas that have been a major challenge in HIV treatment.

Physics: Optics
Published

Save your data on printable magnetic devices? New laser technique's twist might make this reality      (via sciencedaily.com)     Original source 

A team has been developing a new type of laser-induced forward transfer (LIFT) for laser printing using an optical vortex, which has been dubbed OV-LIFT. The team succeeded in printing crystals with helix-like twisted structures, which could hold promise in creating printable magnetic devices for high-density data storage.

Chemistry: Biochemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Nonreciprocal interactions go nonlinear      (via sciencedaily.com)     Original source 

Using two optically trapped glass nanoparticles, researchers observed a novel collective Non-Hermitian and nonlinear dynamic driven by nonreciprocal interactions. This contribution expands traditional optical levitation with tweezer arrays by incorporating the so called non-conservative interactions.

Chemistry: Thermodynamics Physics: Optics
Published

Engineer develops technique that enhances thermal imaging and infrared thermography for police, medical, military use      (via sciencedaily.com)     Original source 

A new method to measure the continuous spectrum of light is set to improve thermal imaging and infrared thermography.

Chemistry: Biochemistry Engineering: Nanotechnology Physics: Optics
Published

Nanoscale device simultaneously steers and shifts frequency of optical light, pointing the way to future wireless communication channels      (via sciencedaily.com)     Original source 

A tunable metasurface can control optical light in space and time, offering a path toward new ways of wirelessly and securely transmitting large amounts of data both on Earth and in space.