Showing 20 articles starting at article 1201

< Previous 20 articles        Next 20 articles >

Categories: Biology: Molecular, Computer Science: General

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

To ward off aging, stem cells must take out the trash      (via sciencedaily.com) 

Researchers find stem cells use a surprising system for discarding misfolded proteins. This unique pathway could be the key to maintaining long-term health and preventing age-related blood and immune disorders.

Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Muscle health depends on lipid synthesis      (via sciencedaily.com)     Original source 

Muscle degeneration, the most prevalent cause of frailty in hereditary diseases and aging, could be caused by a deficiency in one key enzyme in a lipid biosynthesis pathway. Researchers now characterize how the enzyme PCYT2 affects muscle health in disease and aging in laboratory mouse models.

Computer Science: General Energy: Technology
Published

Researchers create breakthrough spintronics manufacturing process that could revolutionize the electronics industry      (via sciencedaily.com) 

Researchers have developed a breakthrough process for making spintronic devices that has the potential to create semiconductors chips with unmatched energy efficiency and storage for use in computers, smartphones, and many other electronics.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Computer Science: General Engineering: Graphene Engineering: Nanotechnology Engineering: Robotics Research
Published

Mind-control robots a reality?      (via sciencedaily.com) 

Researchers have developed biosensor technology that will allow you to operate devices, such as robots and machines, solely through thought control.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Superconducting amplifiers offer high performance with lower power consumption      (via sciencedaily.com) 

Researchers have devised a new concept of superconducting microwave low-noise amplifiers for use in radio wave detectors for radio astronomy observations, and successfully demonstrated a high-performance cooled amplifier with power consumption three orders of magnitude lower than that of conventional cooled semiconductor amplifiers. This result is expected to contribute to the realization of large-scale multi-element radio cameras and error-tolerant quantum computers, both of which require a large number of low-noise microwave amplifiers.

Computer Science: General Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

3D-printed revolving devices can sense how they are moving      (via sciencedaily.com) 

Researchers created a system that enables makers to incorporate sensors directly into rotational mechanisms with only one pass in a 3D printer. This gives rotational mechanisms like gearboxes the ability to sense their angular position, rotation speed, and direction of rotation.

Computer Science: General Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Qubits put new spin on magnetism: Boosting applications of quantum computers      (via sciencedaily.com) 

Research using a quantum computer as the physical platform for quantum experiments has found a way to design and characterize tailor-made magnetic objects using quantum bits, or qubits. That opens up a new approach to develop new materials and robust quantum computing.

Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Discovery of an unexpected function of blood immune cells: Their ability to proliferate      (via sciencedaily.com) 

The ability of a cell to divide, to proliferate, is essential for life and gives rise to the formation of complex organisms from a single cell. It also allows the replacement of used cells from a limited number of 'stem' cells, which then proliferate and specialize. In cancer, however, cell proliferation is no longer controlled and becomes chaotic. Researchers have discovered that, in a healthy individual, certain blood immune cells, the monocytes, also have this ability to proliferate, with the aim to replace tissue macrophages, which are essential for the proper functioning of our body.

Biology: Biotechnology Biology: Cell Biology Biology: Genetics Biology: Microbiology Biology: Molecular
Published

An extra X chromosome-linked gene may explain decreased viral infection severity in females      (via sciencedaily.com) 

It has long been known that viral infections can be more severe in males than females, but the question as to why has remained a mystery -- until possibly now. Researchers have found that female mouse and human Natural Killer cells have an extra copy of an X chromosome-linked gene called UTX. UTX acts as an epigenetic regulator to boost NK cell anti-viral function, while repressing NK cell numbers.

Biology: Cell Biology Biology: Genetics Biology: Molecular Ecology: Extinction
Published

Loss of Menin helps drive the aging process, and dietary supplement can reverse it in mice      (via sciencedaily.com) 

Decline in the hypothalamic Menin may play a key role in aging, according to a new study. The findings reveal a previously unknown driver of physiological aging, and suggest that supplementation with a simple amino acid may mitigate some age-related changes.

Biology: Cell Biology Biology: Microbiology Biology: Molecular Biology: Zoology
Published

Humans bite back by deactivating mosquito sperm      (via sciencedaily.com) 

New research makes it likely that proteins responsible for activating mosquito sperm can be shut down, preventing them from swimming to or fertilizing eggs.

Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: Genetics Biology: Microbiology Biology: Molecular Biology: Zoology Ecology: Endangered Species
Published

Compressive stress shapes the symmetry of Arabidopsis root vascular tissue      (via sciencedaily.com) 

A cytokinin-mediated, proliferation-based mechanism is involved in the generation and maintenance of cell-type specific tissue boundaries during vascular development in Arabidopsis roots. Specifically, the HANABA-TARANU transcription factor forms a feed-forward loop to cytokinin signaling, which in turn regulates the position and frequency of cell proliferation of proto-vascular cells such that mechanical stress of the surrounding tissues guides growth in an apical-oriented manor, maintaining cell patterning throughout the tissue section.

Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Where the HI-Virus sleeps in the brain      (via sciencedaily.com) 

The human immunodeficiency virus HIV-1 is able to infect various tissues in humans. Once inside the cells, the virus integrates its genome into the cellular genome and establishes persistent infections. The role of the structure and organization of the host genome in HIV-1 infection is not well understood. Using a cell culture model based on brain immune microglia cells, an international research team has now defined the insertion patterns of HIV-1 in the genome of microglia cells.

Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Cellular waste removal differs according to cell type      (via sciencedaily.com) 

'Miniature shredders' are at work in each cell, disassembling and recycling cell components that are defective or no longer required. The exact structure of these shredders differs from cell type to cell type, a study now shows. For example, cancer cells have a special variant that can supply them particularly effectively with building blocks for their energy metabolism.

Biology: Cell Biology Biology: Genetics Biology: Molecular
Published

Study describes the structural and functional effects of several mutations on the androgen receptor      (via sciencedaily.com) 

The androgen receptor is a key transcriptional factor for the proper sex development -- especially in males -- and the physiological balance of all the tissues that express this receptor. The androgen receptor is involved in several pathologies and syndromes, such as the spinal and bulbar muscular atrophy or androgen insensitivity syndrome, among others, for which there is no specific treatment. Regarded as the main initial and progression factor in prostate cancer -- the second most common malignant disease in men in industrialized countries -- this receptor has been, for decades, the main therapeutical target for the treatment against this disease.

Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Genetics Biology: Molecular
Published

Researchers highlight nucleolar DNA damage response in fight against cancer      (via sciencedaily.com) 

Researchers have now encapsulated the young field of nucleolar DNA damage response (DDR) pathways. A new review highlights six mechanisms by which cells repair DNA damage. By attacking these mechanisms, future applied researchers will be able to trip up cancer's reproduction and growth.

Biology: Biotechnology Biology: Cell Biology Biology: Genetics Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Making sense of scents: Deciphering our sense of smell      (via sciencedaily.com) 

Breaking a longstanding impasse in our understanding of olfaction, scientists have created the first molecular-level, 3D picture of how an odor molecule activates a human odorant receptor, a crucial step in deciphering the sense of smell.

Biology: Biotechnology Biology: Cell Biology Biology: Molecular
Published

Scientists discover key information about the function of mitochondria in cancer cells      (via sciencedaily.com) 

A new study represents a first step towards generating highly detailed 3-dimensional maps of lung tumors using genetically engineered mouse models.

Biology: Biotechnology Biology: Cell Biology Biology: Genetics Biology: Microbiology Biology: Molecular Geoscience: Geochemistry
Published

Designing more useful bacteria      (via sciencedaily.com) 

In a step forward for genetic engineering and synthetic biology, researchers have modified a strain of Escherichia coli bacteria to be immune to natural viral infections while also minimizing the potential for the bacteria or their modified genes to escape into the wild.

Biology: Biotechnology Biology: Cell Biology Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

'Glow-in-the-dark' proteins could help diagnose viral diseases      (via sciencedaily.com) 

Despite recent advancements, many highly sensitive diagnostic tests for viral diseases still require complicated techniques to prepare a sample or interpret a result, making them impractical for point-of-care settings or areas with few resources. But now, a team has developed a sensitive method that analyzes viral nucleic acids in as little as 20 minutes and can be completed in one step with 'glow-in-the-dark' proteins.