Showing 20 articles starting at article 1221
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular, Computer Science: General
Published Researcher solves nearly 60-year-old game theory dilemma


A researcher has solved a nearly 60-year-old game theory dilemma called the wall pursuit game, with implications for better reasoning about autonomous systems such as driver-less vehicles.
Published Molecular component of caffeine may play a role in gut health


A new study explores exactly what leads to the generation of Th17 cells -- an important subtype of cells in the intestine -- and uncovers some of the underappreciated molecular players and events that lead to cell differentiation in the gut.
Published Mirror-image molecules can modify signaling in neurons


With the aid of some sea slugs, chemists have discovered that one of the smallest conceivable tweaks to a biomolecule can elicit one of the grandest conceivable consequences: directing the activation of neurons. The team has shown that the orientation of a single amino acid -- in this case, one of dozens found in the neuropeptide of a sea slug -- can dictate the likelihood that the peptide activates one neuron receptor versus another. Because different types of receptors are responsible for different neuronal activities, the finding points to another means by which a brain or nervous system can regulate the labyrinthine, life-sustaining communication among its cells.
Published Cleaning up the atmosphere with quantum computing


Practical carbon capture technologies are still in the early stages of development, with the most promising involving a class of compounds called amines that can chemically bind with carbon dioxide. Researchers now deploy an algorithm to study amine reactions through quantum computing. An existing quantum computer cab run the algorithm to find useful amine compounds for carbon capture more quickly, analyzing larger molecules and more complex reactions than a traditional computer can.
Published Researchers develop soft robot that shifts from land to sea with ease


Most animals can quickly transition from walking to jumping to crawling to swimming if needed without reconfiguring or making major adjustments. Most robots cannot. But researchers have now created soft robots that can seamlessly shift from walking to swimming, for example, or crawling to rolling using a bistable actuator made of 3D-printed soft rubber containing shape-memory alloy springs that react to electrical currents by contracting, which causes the actuator to bend. The team used this bistable motion to change the actuator or robot's shape. Once the robot changes shape, it is stable until another electrical charge morphs it back to its previous configuration.
Published Researchers develop enhanced genetic animal model of Down syndrome



Researchers compared a new genetic animal model of Down syndrome to the standard model and found the updated version to be enhanced. The new mouse model shows milder cognitive traits compared to a previously studied Down syndrome mouse model.
Published Biological network in cells helps body adapt to stresses on health


Scientists have done research that opens up a whole new world within our cells. Their study uncovers a vast network of interactions that assist cells in adjusting in real time to withstand stresses on our health.
Published TurboID uncovers new meiotic proteins in Arabidopsis thaliana


Meiotic recombination assures genetic variation during breeding. During meiotic prophase I, chromosomes are organized in a loop-base array by a proteinaceous structure called meiotic chromosome axis which is critical for meiotic recombination and genetically diverse gametes. An international research team reports the application of a TurboID (TbID)-based approach to identify proteins in proximity of meiotic chromosome axes in Arabidopsis thaliana. Not only known but also new meiotic proteins were uncovered.
Published A quick new way to screen virus proteins for antibiotic properties


A whole new world of antibiotics is waiting inside the viruses that infect bacteria. Scientists are making it easier to study them.
Published Triggering bitter taste receptors could someday treat asthma, COPD


Surprisingly, bitter taste receptors are not only located in the mouth, but also elsewhere in the body, including the airways. Activating those receptors opens up lung passageways, so they're a potential target for treating asthma or chronic obstructive pulmonary disease (COPD). Now, researchers report that they have designed a potent and selective compound that could lead the way to such therapies.
Published How to assemble a complete jaw


The skeleton, tendons, and glands of a functional jaw all derive from the same population of stem cells, which arise from a cell population known as neural crest. To discover how these neural crest-derived cells know to make the right type of cell in the right location, researchers focused on a particular gene, Nr5a2, that was active in a region of the face that makes tendons and glands, but not skeleton. To understand the role of Nr5a2, the scientists created zebrafish lacking this gene. These mutant zebrafish generated excess cartilage and were missing tendons in their jaws.
Published Standard model of electroporation refuted


Strong electric fields can be used to create pores in biomembranes. The method is known as electroporation. Inducing such defects in membranes in a targeted manner is an important technique in medicine and biotechnology, but also in the treatment of foodstuffs.
Published New insights into cellular 'bridges' shed light on development, disease


Most cells in the bodies of living things duplicate their contents and physically separate into new cells through the process of cell division. But across many species, germ cells, those that become eggs or sperm, don't fully separate. They remain interconnected through small bridges called ring canals and cluster together. In a new study, researchers uncover how it is that germ cells in fruit flies form these ring canals, a finding that they say will provide new insights into a widely shared feature of development and into diseases in which cell division is disrupted.
Published New kind of transistor could shrink communications devices on smartphones


One month after announcing a ferroelectric semiconductor at the nanoscale thinness required for modern computing components, a team has now demonstrated a reconfigurable transistor using that material. Their work paves the way for single amplifiers that can do the work of multiple conventional amplifiers, among other possibilities.
Published Researchers take a step towards turning interactions that normally ruin quantum information into a way of protecting it


A new method for predicting the behavior of quantum devices provides a crucial tool for real-world applications of quantum technology.
Published Artificial intelligence (AI) reconstructs motion sequences of humans and animals


Imagine for a moment, that we are on a safari watching a giraffe graze. After looking away for a second, we then see the animal lower its head and sit down. But, we wonder, what happened in the meantime? Computer scientists have found a way to encode an animal's pose and appearance in order to show the intermediate motions that are statistically likely to have taken place.
Published Complex oxides could power the computers of the future


Materials scientists describe in two papers how complex oxides can be used to create very energy-efficient magneto-electric spin-orbit (MESO) devices and memristive devices with reduced dimensions.
Published Phage attacks shown in new light


New methodology and tools provide an opportunity to watch in unprecedented detail as a phage attacks a bacterium.
Published Phone-based measurements provide fast, accurate information about the health of forests


Researchers have developed an algorithm that uses computer vision techniques to accurately measure trees almost five times faster than traditional, manual methods.
Published Rhythmic eating pattern preserves fruit fly muscle function under obese conditions


Obese fruit flies are the experimental subjects in a study of the causes of muscle function decline due to obesity. In humans, skeletal muscle plays a crucial role in metabolism, and muscle dysfunction due to human obesity can lead to insulin resistance and reduced energy levels.