Showing 20 articles starting at article 241

< Previous 20 articles        Next 20 articles >

Categories: Biology: Molecular, Computer Science: General

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Offbeat: General Offbeat: Plants and Animals
Published

Chicken feathers to deliver chemotherapy drugs and repair enzymes      (via sciencedaily.com)     Original source 

A new method of drug delivery using proline, an amino acid found in chicken feathers and skin tissue, could be used to limit the side effects of chemotherapy and repair important enzymes, new research suggests.

Computer Science: General Mathematics: Modeling
Published

AI helps medical professionals read confusing EEGs to save lives      (via sciencedaily.com)     Original source 

Researchers have developed an assistive machine learning model that greatly improves the ability of medical professionals to read the electroencephalography (EEG) charts of intensive care patients. Because EEG readings are the only method for knowing when unconscious patients are in danger of suffering a seizure or are having seizure-like events, the computational tool could help save thousands of lives each year.

Biology: Biochemistry Biology: Cell Biology Biology: Microbiology Biology: Molecular
Published

Intermittent fasting shows promise in improving gut health, weight management      (via sciencedaily.com)     Original source 

Participants following an intermittent fasting and protein-pacing regimen, which involves evenly spaced protein intake throughout the day, saw better gut health, weight loss and metabolic responses. These benefits were notably greater than those seen with simple calorie restriction. The findings could advance our understanding of the relationship between the gut microbiome and metabolism and improve strategies for managing obesity.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Mechanisms for selective multiple sclerosis treatment strategy      (via sciencedaily.com)     Original source 

Researchers have demonstrated how B cells infected with the Epstein-Barr virus (EBV) can contribute to a pathogenic, inflammatory phenotype that contributes to multiple sclerosis (MS); the group has also shown how these problematic B cells can be selectively targeted in a way that reduces the damaging autoimmune response of multiple sclerosis.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

'Cloaked' proteins deliver cancer-killing therapeutics into cells      (via sciencedaily.com)     Original source 

Scientists have designed a way to 'cloak' proteins in a generalized technique that could lead to repurposing things like antibodies for biological research and therapeutic applications.

Biology: Zoology Computer Science: Artificial Intelligence (AI) Computer Science: General Ecology: Animals Mathematics: Modeling
Published

Tracking animals without markers in the wild      (via sciencedaily.com)     Original source 

Researchers developed a computer vision framework for posture estimation and identity tracking which they can use in indoor environments as well as in the wild. They have thus taken an important step towards markerless tracking of animals in the wild using computer vision and machine learning.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Genetic mosaicism more common than thought      (via sciencedaily.com)     Original source 

Researchers found that approximately one in 40 human bone marrow cells carry massive chromosomal alterations without causing any apparent disease or abnormality. Even so-called normal cells carry all sorts of genetic mutations, meaning there are more genetic differences between individual cells in our bodies than between different human beings. The discovery was enabled by a single-cell sequencing technology called Strand-seq, a unique DNA sequencing technique that can reveal subtle details of genomes in single cells that are too difficult to detect with other methods.

Computer Science: Artificial Intelligence (AI) Computer Science: General Offbeat: Computers and Math Offbeat: General
Published

AI headphones let wearer listen to a single person in a crowd, by looking at them just once      (via sciencedaily.com)     Original source 

Engineers have developed an artificial intelligence system that lets someone wearing headphones look at a person speaking for three to five seconds to 'enroll' them. The system then plays just the enrolled speaker's voice in real time, even as the pair move around in noisy environments.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Physics: Optics
Published

Observing mammalian cells with superfast soft X-rays      (via sciencedaily.com)     Original source 

Researchers have developed a new technique to view living mammalian cells. The team used a powerful laser, called a soft X-ray free electron laser, to emit ultrafast pulses of illumination at the speed of femtoseconds, or quadrillionths of a second. With this they could capture images of carbon-based structures in living cells for the first time, before the soft X-ray radiation damaged them.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

New 'atlas' provides unprecedented insights on how genes function in early embryo development      (via sciencedaily.com)     Original source 

Biologists have provided new insights on a longstanding puzzle in biology: How complex organisms arise from a single fertilized cell. Producing a new 'gene atlas' with 4-D imaging, the researchers captured unprecedented insights on how embryonic development unfolds.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Novel approach to interrogate tissue-specific protein-protein interactions      (via sciencedaily.com)     Original source 

Multicellular organisms, like animals and plants, have complex cells with diverse functions. This complexity arises from the need for cells to produce distinct proteins that interact with each other. This interaction is crucial for cells to carry out their specific tasks and to form complex molecular machinery. However, our current understanding of such protein-protein interactions often lacks cellular contexts because they were usually studied in an in vitro system or in cells isolated from their tissue environment. Effective methods to investigate protein-protein interactions in a tissue-specific manner are largely missing.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Tracking down the genetic causes of lupus to personalize treatment      (via sciencedaily.com)     Original source 

Treatment of autoimmune diseases like lupus has long relied on steroids to knock down the immune system, but more targeted therapies are currently undergoing clinical trials. To make sure these therapies get to the patients who will benefit, work is needed to identify the specific mutations behind each patient's disease. Researchers now report several dozen mutations associated with oversensitive toll-like receptors -- a major cause of autoimmune disease -- and linked two mutations to patients.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Biology: Zoology
Published

Exploring diversity in cell division      (via sciencedaily.com)     Original source 

Animals and fungi predominantly use two different modes of cell division -- called open and closed mitosis, respectively. A new study has shown that different species of Ichthyosporea -- marine protists that are close relatives of both animals and fungi -- use either open and closed mitosis, closely correlated to whether the species has multinucleate life cycle stages. The study demonstrates the way animals do cell division might have evolved long before animals themselves did and how this is linked to an organism's life cycle.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Sweet move: a modified sugar enhances antisense oligonucleotide safety and efficacy      (via sciencedaily.com)     Original source 

Researchers found that adding a newly developed modified sugar, BNAP-AEO, to gapmer antisense oligonucleotides (ASOs) increased their affinity for target RNAs, thus significantly enhancing their gene-silencing effects in vitro and in vivo. The BNAP-AEO modification also decreased gapmer ASO toxicity to the central nervous system (CNS), suggesting that it could improve the clinical application of ASO treatment of CNS disease.

Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New crystal production method could enhance quantum computers and electronics      (via sciencedaily.com)     Original source 

Scientists describe a new method to make very thin crystals of the element bismuth -- a process that may aid the manufacturing of cheap flexible electronics an everyday reality.

Computer Science: General Computer Science: Quantum Computers Mathematics: Modeling
Published

How AI helps programming a quantum computer      (via sciencedaily.com)     Original source 

Researchers have unveiled a novel method to prepare quantum operations on a given quantum computer, using a machine learning generative model to find the appropriate sequence of quantum gates to execute a quantum operation. The study marks a significant step forward in unleashing the full extent of quantum computing.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Studies reveal cell-by-cell changes caused when pig hearts and kidneys are transplanted into humans      (via sciencedaily.com)     Original source 

Two new studies detail the changes seen at the single-cell level in pig organs and recipient human bodies before, during, and just after the xenotransplantation surgeries in the decedents.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Clarifying the cellular mechanisms underlying periodontitis with an improved animal model      (via sciencedaily.com)     Original source 

Although periodontitis is an extremely prevalent disorder, it is challenging to conduct detailed and comprehensive analyses of its progression at the cellular level. Recently, researchers developed an improved periodontitis mouse model that simplifies the collection and analysis of multiple periodontal tissue types. Using this model, they clarified the role of an important signaling pathway in the inflammatory response of periodontal tissue, paving the way for better diagnostic and therapeutic strategies for periodontitis.

Computer Science: General
Published

AI chips could get a sense of time      (via sciencedaily.com)     Original source 

Artificial neural networks may soon be able to process time-dependent information, such as audio and video data, more efficiently.

Chemistry: Biochemistry Chemistry: Organic Chemistry Computer Science: General Engineering: Nanotechnology
Published

Blueprints of self-assembly      (via sciencedaily.com)     Original source 

Scientists have taken a step closer to replicating nature's processes of self-assembly. The study describes the synthetic construction of a tiny, self-assembled crystal known as a 'pyrochlore,' which bears unique optical properties. The advance provides a steppingstone to the eventual construction of sophisticated, self-assembling devices at the nanoscale -- roughly the size of a single virus.