Showing 20 articles starting at article 341
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular, Computer Science: Encryption
Published By growing animal cells in rice grains, scientists dish up hybrid food



From lab-grown chicken to cricket-derived protein, these innovative alternatives offer hope for a planet struggling with the environmental and ethical impacts of industrial agriculture. Now, scientists add a new recipe to the list -- cultured beef rice -- by growing animal muscle and fat cells inside rice grains. The method results in a nutritious and flavorful hybrid food that, once commercialized, could offer a more affordable protein alternative with a smaller carbon footprint.
Published Controlling root growth direction could help save crops and mitigate climate change



Scientists have determined how the well-known plant hormone ethylene is crucial in controlling the angle at which roots grow. The findings can be used to engineer plants and crops that withstand the environmental stresses of climate change and drought, and perhaps to create plants that remove carbon dioxide from the atmosphere and store it deep underground to help mitigate climate change.
Published Personalized adhesives for inner healing -- now tailored just for you



Scientists develop novel underwater bio-adhesive patches with mussel adhesive protein.
Published Low-cost microbe can speed biological discovery



Researchers have created a new version of a microbe to compete economically with E. coli -- a bacteria commonly used as a research tool due to its ability to synthesize proteins -- to conduct low-cost and scalable synthetic biological experiments.
Published New trial highlights incremental progress towards a cure for HIV-1



A new clinical trial suggests that a combination of the drug vorinostat and immunotherapy can coax HIV-infected cells out of latency and attack them. The findings highlight how close -- yet still far -- researchers have come to developing a cure for HIV-1.
Published Why do flies fall in love? Researchers tease out the signals behind fruit fly courtship songs



Researchers have pinpointed the group of neurons in the nerve cord -- a structure analogous to our spinal cord -- that produce and pattern the fly's two major courtship songs. They've also measured neuronal activity in these cells while flies were singing to understand how these neurons control each type of song.
Published Nutrients direct intestinal stem cell function and affect aging



The capacity of intestinal stem cells to maintain cellular balance in the gut decreases upon aging. Researchers have discovered a new mechanism of action between the nutrient adaptation of intestinal stem cells and aging. The finding may make a difference when seeking ways to maintain the functional capacity of the aging gut.
Published New research uncovers biological drivers of heart disease risk



Over the past 15 years, researchers have identified hundreds of regions in the human genome associated with heart attack risk. However, researchers lack efficient ways to explore how these genetic variants are molecularly connected to cardiovascular disease, limiting efforts to develop therapeutics. To streamline analysis of hundreds of genetic variants associated with coronary artery disease (CAD), a team of researchers combined multiple sequencing and experimental techniques to map the relationship between known CAD variants and the biological pathways they impact.
Published Gut microbiome changes during pregnancy may influence immune system response



A new study identifies numerous pathways by which the gut microbiome may change the immune system.
Published New approach to tackling bacterial infections identified



Researchers have identified a new approach to controlling bacterial infections. The team found a way to turn on a vital bacterial defense mechanism to fight and manage bacterial infections. The defense system, called cyclic oligonucleotide-based antiphage signaling system (CBASS), is a natural mechanism used by certain bacteria to protect themselves from viral attacks. Bacteria self-destruct as a means to prevent the spread of virus to other bacterial cells in the population.
Published Researchers discover key to molecular mystery of how plants respond to changing conditions



A team of researchers recently published a pioneering study that answers a central question in biology: how do organisms rally a wide range of cellular processes when they encounter a change -- either internally or in the external environment -- to thrive in good times or survive the bad times? The research, focused on plants, identifies the interactions between four compounds: pectin, receptor proteins FERONIA and LLG1 and the signal RALF peptide.
Published Scientists develop new biocontainment method for industrial organisms



Researchers have developed a new biocontainment method for limiting the escape of genetically engineered organisms used in industrial processes.
Published Extra fingers and hearts: Pinpointing changes to our genetic instructions that disrupt development



Scientists can now predict which single-letter changes to the DNA within our genomes will alter genetic instructions and disrupt development, leading to changes such as the growth of extra digits and hearts. Such knowledge opens the door to predictions of which enhancer variants underlie disease in order to harness the full potential of our genomes for better human health.
Published Computer-engineered DNA to study cell identities



A new computer program allows scientists to design synthetic DNA segments that indicate, in real time, the state of cells. It will be used to screen for anti-cancer or viral infections drugs, or to improve gene and cell-based immunotherapies.
Published Vitamin B12 adaptability in Antarctic algae has implications for climate change, life in the Southern Ocean



The algae P. antarctica has two forms of the enzyme that makes the amino acid methionine, one needing B12, and one that is slower, but doesn't need it. This means it has the ability to adapt and survive with low B12 availability. The presence of the MetE gene in P. antarctica gives the algae the ability to adapt to lower vitamin B12 availability, giving it a potential advantage to bloom in the early austral spring when bacterial production is low. P. antarctica takes in the CO2 and releases oxygen through photosynthesis. Understanding its ability to grow in environments with low vitamin B12 availability can help climate modelers make more accurate predictions.
Published Scientists see an ultra-fast movement on surface of HIV virus



Seeing a glycoprotein on the envelope of the HIV virus snap open and shut in mere millionths of a second is giving investigators a new handle on the surface of the virus that could lead to broadly neutralizing antibodies for an AIDS vaccine. Being able to attach an antibody specifically to this little structure that would prevent it from popping open would be key.
Published Mechanism discovered that protects tissue after faulty gene expression



A study has identified a protein complex that is activated by defects in the spliceosome, the molecular scissors that process genetic information. Future research could lead to new therapeutic approaches to treat diseases caused by faulty splicing.
Published Disrupted cellular function behind type 2 diabetes in obesity



Disrupted function of 'cleaning cells' in the body may help to explain why some people with obesity develop type 2 diabetes, while others do not. A study describes this newly discovered mechanism.
Published A clutch stretch goes a long way



New results reveal a new mode of force transmission in which dynamic molecular stretching bridges the extracellular matrix and flowing F-actin moving at different speeds. This discovery underscores the necessity of molecular elasticity and random coupling for sufficiently transmitting force. The findings also call for revising the role of molecular unfolding.
Published Plant receptors that control immunity and development share a common origin



Researchers have traced the origin and evolutionary trajectory of plant immune receptors. Their discovery will make it easier to identify immune receptor genes from genomic information and could help in the development of pathogen-resistant crops.