Showing 20 articles starting at article 401
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular, Computer Science: Encryption
Published Toxic algae blooms: Study assesses potential health hazards to humans



Water samples from 20 sites were tested using a panel of immortalized human cell lines corresponding to the liver, kidney and brain to measure cytotoxicity. Results show that each control toxin induced a consistent pattern of cytotoxicity in the panel of human cell lines assayed. Known toxins were seen only during blooms. Because cell toxicity was seen in the absence of blooms, it suggests that there might be either emergent toxins or a combination of toxins present at those times. Findings suggest that other toxins with the potential to be harmful to human health may be present in the lagoon.
Published A new type of plant metalloreductase maintains root growth under low phosphorus



Phosphorus is essential for undisturbed plant growth and development. However, in many soils, phosphorus is only poorly available. One mechanism used by plants to increase phosphorus availability is the release of malate, an organic acid, which can form complexes with iron or aluminium in the soil, thereby liberating sorbed phosphate. However, this response can also result in iron overaccumulation, which can inhibit root growth.
Published Smart skin bacteria are able to secrete and produce molecules to treat acne



An experimental study has shown that a type of skin bacterium can efficiently be engineered to produce a protein to regulate sebum production. This application could treat acne without compromising the homeostasis of the entire skin microbiome.
Published Large-scale mapping of pig genes could pave the way for new human medicines



Researchers have carried out complex genetic analyses of hundreds of pigs and humans to identify differences and similarities. This new knowledge can be used to ensure healthier pigs for farmers and can help the pharmaceutical industry breed better laboratory pigs for testing new medicines.
Published Life span increases in mice when specific brain cells are activated



A new study identifies, in mice, a critical communication pathway connecting the brain and the body's fat tissue in a feedback loop that appears central to energy production throughout the body. The research suggests that the gradual deterioration of this feedback loop contributes to the increasing health problems that are typical of natural aging.
Published Researchers discover molecular 'barcode' used by bacteria to secrete toxins



Researchers have discovered a molecular 'barcode' system used by disease-causing bacteria to distinguish between beneficial and toxic molecules.
Published Important membrane transport mechanism in pathogenic bacteria



Some bacterial membrane transporters work almost like freight elevators to transport substances through the cell membrane into the interior of the cell. The transporter itself spans the bacterial membrane. Like a forklift, a soluble protein outside the bacterium transports the substance to the 'elevator' and unloads its cargo there. The freight elevator transports it to the inside of the cell, in other words to another floor.
Published New roles for autophagy genes in cellular waste management and aging



Autophagy, which declines with age, may hold more mysteries than researchers previously suspected. Scientists have now uncovered possible novel functions for various autophagy genes, which may control different forms of disposal including misfolded proteins -- and ultimately affect aging.
Published The surprisingly resourceful ways bacteria thrive in the human gut



New research shows that some groups of bacteria in the gut are amazingly resourceful, with a large repertoire of genes that help them generate energy for themselves and potentially influence human health as well.
Published Scientists solve mystery of how predatory bacteria recognizes prey



A decades-old mystery of how natural antimicrobial predatory bacteria are able to recognize and kill other bacteria may have been solved, according to new research.
Published Nematode proteins shed light on infertility



Biologists developed a method for illuminating the intricate interactions of the synaptonemal complex in the nematode C. elegans. The authors identified a trio of protein segments that guide chromosomal interactions, and pinpointed the location where they interact with each other. Their novel method uses a technique known as genetic suppressor screening, which can serve as a blueprint for research on large cellular assemblies that resist traditional structural analysis.
Published Study reveals clues to how Eastern equine encephalitis virus invades brain cells



Researchers have determined how Eastern equine encephalitis virus attaches to a receptor it uses to enter and infect cells. The findings laid the groundwork for a receptor decoy molecule that protects mice from encephalitis caused by the virus.
Published Bacteria load their syringes



Many bacterial pathogens use small injection apparatuses to manipulate the cells of their hosts, such as humans, so that they can spread throughout the body. To do this, they need to fill their syringes with the relevant injection agent. A technique that tracks the individual movement of proteins revealed how bacteria accomplish this challenging task.
Published New reasons eating less fat should be one of your resolutions



A new study to motivate your New Year's resolutions: it demonstrates that high-fat diets negatively impact genes linked not only to obesity, colon cancer and irritable bowels, but also to the immune system and brain function.
Published Elusive cytonemes guide neural development, provide signaling 'express route'



Discover the first images of cytonemes during mammalian neural development, serving as express routes to establish morphogen gradients and tissue patterning.
Published First step towards synthetic CO2 fixation in living cells



Three modules forming a new-to-nature CO2 fixation cycle have been successfully implemented in E.coli.
Published Big impacts from small changes in cell



Tiny things matter -- for instance, one amino acid can completely alter the architecture of the cell. Researchers have now investigated the structure and mechanics of the main component of the cytoskeleton of the cell: a protein known as actin. Actin is found in all living cells where it has a range of important functions -- from muscle contraction to cell signalling and cell shape. This protein comes in two different varieties termed 'isoforms', which are known as gamma actin and beta actin.
Published How jellyfish regenerate functional tentacles in days



At about the size of a pinkie nail, the jellyfish species Cladonema can regenerate an amputated tentacle in two to three days -- but how? Regenerating functional tissue across species, including salamanders and insects, relies on the ability to form a blastema, a clump of undifferentiated cells that can repair damage and grow into the missing appendage. Jellyfish, along with other cnidarians such as corals and sea anemones, exhibit high regeneration abilities, but how they form the critical blastema has remained a mystery until now.
Published GPCR structure: Research reveals molecular origins of function for a key drug target



Scientists reveal how G protein-coupled receptors, major therapeutic drug targets, decode critical properties of their ligands.
Published New tool unifies single-cell data



A new methodology that allows for the categorization and organization of single-cell data has been launched. It can be used to create a harmonized dataset for the study of human health and disease.