Showing 20 articles starting at article 101
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular, Computer Science: Artificial Intelligence (AI)
Published Unique characteristics of previously unexplored protein discovered



Research achieves scientific breakthrough in understanding cell division.
Published Immune system in the spotlight



Our immune system is always on alert, detecting and eliminating pathogens and cancer cells. Cellular control mechanisms cause diseased cells to present antigens on their surface like signs for the immune system. For analysis of the necessary complex antigen processing and transport processes in real time, researchers have developed a 'cage' that is opened with light to release trapped antigens at a specific place and time.
Published AI found to boost individual creativity -- at the expense of less varied content



A new study finds that AI enhances creativity by boosting the novelty of story ideas as well as the 'usefulness' of stories -- their ability to engage the target audience and potential for publication. However, AI was not judged to enhance the work produced by more creative writers and the study also warns that while AI may enhance individual creativity it may also result in a loss of collective novelty, as AI-assisted stories were found to contain more similarities to each other and were less varied and diverse.
Published New ways to study spinal cord malformations in embryos



Scientists have successfully created mechanical force sensors directly in the developing brains and spinal cords of chicken embryos, which they hope will improve understanding and prevention of birth malformations such as spina bifida.
Published A better way to make RNA drugs



RNA drugs are the next frontier of medicine, but manufacturing them requires an expensive and labor-intensive process that limits production and produces metric tons of toxic chemical waste. Researchers report a new, enzyme-based RNA synthesis method that can produce strands of RNA with both natural and modified nucleotides without the environmental hazards.
Published Muscle machine: How water controls the speed of muscle contraction



The flow of water within a muscle fiber may dictate how quickly muscle can contract, according to a new study.
Published Nanoplastics and 'forever chemicals' disrupt molecular structures, functionality



Researchers have made significant inroads in understanding how nanoplastics and per- and polyfluoroalkyl substances (PFAS) -- commonly known as forever chemicals -- disrupt biomolecular structure and function. The work shows that the compounds can alter proteins found in human breast milk and infant formulas -- potentially causing developmental issues downstream.
Published Learning dance moves could help humanoid robots work better with humans



Engineers have trained a humanoid robot to perform a variety of expressive movements, from simple dance routines to gestures like waving, high-fiving and hugging, all while maintaining a steady gait on diverse terrains. This work marks a step towards building robots that perform more complex and human-like motions.
Published How risk-averse are humans when interacting with robots?



How do people like to interact with robots when navigating a crowded environment? And what algorithms should roboticists use to program robots to interact with humans? These are the questions that a team of mechanical engineers and computer scientists sought to answer in a recent study.
Published Opening the right doors: 'Jumping gene' control mechanisms revealed



International joint research led by Akihisa Osakabe and Yoshimasa Takizawa of the University of Tokyo has clarified the molecular mechanisms in thale cresses (Arabidopsis thaliana) by which the DDM1 (Decreased in DNA Methylation 1) protein prevents the transcription of 'jumping genes.' DDM1 makes 'jumping genes' more accessible for transcription-suppressing chemical marks to be deposited. Because a variant of this protein exists in humans, the discovery provides insight into genetic conditions caused by such 'jumping gene' mutations.
Published First ever 3D reconstruction of 52,000-year-old woolly mammoth chromosomes thanks to serendipitously freeze-dried skin



An international research team has assembled the genome and 3D chromosomal structures of a 52,000-year-old woolly mammoth -- the first time such a feat has been achieved for any ancient DNA sample. The fossilized chromosomes, which are around a million times longer than most ancient DNA fragments, provide insight into how the mammoth's genome was organized within its living cells and which genes were active within the skin tissue from which the DNA was extracted. This unprecedented level of structural detail was retained because the mammoth underwent freeze-drying shortly after it died, which meant that its DNA was preserved in a glass-like state.
Published AI Chatbots have shown they have an 'empathy gap' that children are likely to miss



Artificial intelligence (AI) chatbots have frequently shown signs of an 'empathy gap' that puts young users at risk of distress or harm, raising the urgent need for 'child-safe AI', according to a new study. The research urges developers and policy actors to prioritize AI design that take greater account of children's needs. It provides evidence that children are particularly susceptible to treating chatbots as lifelike, quasi-human confidantes, and that their interactions with the technology can go awry when it fails to respond to their unique needs and vulnerabilities. The study links that gap in understanding to recent reports of cases in which interactions with AI led to potentially dangerous situations for young users.
Published A new twist on artificial 'muscles' for safer, softer robots



Engineers have developed a new soft, flexible device that makes robots move by expanding and contracting -- just like a human muscle. To demonstrate their new device, called an actuator, the researchers used it to create a cylindrical, worm-like soft robot and an artificial bicep. In experiments, the cylindrical soft robot navigated the tight, hairpin curves of a narrow pipe-like environment, and the bicep was able to lift a 500-gram weight 5,000 times in a row without failing.
Published Atlas of proteins reveals inner workings of cells



Researchers discover how proteins behave inside cells using AI, which has the potential to guide drug design.
Published Big gain in battle against harmful bacteria



An unexpected find has enabled important progress to be made in the battle against harmful bacteria.
Published New one-step method to make multiple edits to a cell's genome



A team of scientists have developed a new method that enables them to make precise edits in multiple locations within a cell -- all at once. Using molecules called retrons, they created a tool that can efficiently modify DNA in bacteria, yeast, and human cells.
Published New bio-based tool quickly detects concerning coronavirus variants



Researchers have developed a bioelectric device that can detect and classify new variants of coronavirus to identify those that are most harmful. It has the potential to do the same with other viruses, as well.
Published GeneMAP discovery platform will help define functions for 'orphan' metabolic proteins



Researchers have developed a discovery platform to probe the function of genes involved in metabolism -- the sum of all life-sustaining chemical reactions. The investigators used the new platform, called GeneMAP (Gene-Metabolite Association Prediction), to identify a gene necessary for mitochondrial choline transport.
Published Never-before-seen view of gene transcription captured



New tech reveals findings that address long-standing theories about how bacteria begin the process of making RNA from DNA.
Published Do genes-in-pieces code for proteins that fold in pieces?



A new study offers new insights into the evolution of foldable proteins.